Virology Course 2018

 

Virology – Biology 3310/4310

Spring 2018

The complete 2017 virology course materials are available at virology.ws/virology-course-2017

viral video

This Columbia University virology course is offered each year in the spring semester.

Prerequisite: Two semesters of a rigorous, molecularly-oriented Introductory Biology course (such as C2005), or the Instructor’s permission (vrr1@columbia.edu).

Course Name: Virology
Sessions: M, W 4:10 – 5:25 PM
Start date: Wednesday, January 17, 2017
Points: 3
Location: Pupin 301
Course #: Biology UN3310.001 or GR4310.001
Instructor: Prof. V. Racaniello

Description

The basic thesis of the course is that all viruses adopt a common strategy. The strategy is simple:

1. Viral genomes are contained in metastable particles.

2. Genomes encode gene products that promote an infectious cycle (mechanisms for genomes to enter cells, replicate, and exit in particles).

3. Infection patterns range from benign to lethal; infections can overcome or co-exist with host defenses.

Despite the apparent simplicity, the tactics evolved by particular virus families to survive and prosper are remarkable. This rich set of solutions to common problems in host/parasite interactions provides significant insight and powerful research tools. Virology has enabled a more detailed understanding of the structure and function of molecules, cells and organisms and has provided fundamental understanding of disease and virus evolution.

The course will emphasize the common reactions that must be completed by all viruses for successful reproduction within a host cell and survival and spread within a host population. The molecular basis of alternative reproductive cycles, the interactions of viruses with host organisms, and how these lead to disease are presented with examples drawn from a set of representative animal and human viruses, although selected bacterial viruses will be discussed.

Textbook

The recommended textbook is Principles of Virology. Vol I: Molecular Biology, Vol. II: Pathogenesis and Control (S.J. Flint et al., Third Edition, ASM Press 2015).

Other course resources

1. Students should read Prof. Racaniello’s virology blog for information relevant to the course.

2. Students should listen to the weekly podcast “This Week in Virology”, produced by Prof. Racaniello, for additional material about viruses relevant to the course. You can subscribe to TWiV at iTunes.

3. Lecture slides (pdf) will be posted at this website before each class.

4. Videocasts of all lectures (slides plus audio) will be posted at this website.

Lecture Schedule, Spring 2018

Date Topic Reading Slides Study Questions Video
1/17 Lecture 1: What is a virus? Flint Vol I Chp 1
€¢The virus and the virion
€¢Cell size and scale
€¢Pandoravirus
pdf Word YouTube
1/22 Lecture 2: The infectious cycle Flint Vol I Chp 2
€¢Influenza virus growth in eggs
€¢The amazing cells of Henrietta Lacks
€¢Counting Viruses
€¢Viral RNA is not infectious virus
pdf Word YouTube
1/24 Lecture 3: Genomes and genetics Flint Vol I Chp 3
€¢The Baltimore scheme
€¢ViralZone
pdf Word YouTube
1/29 Lecture 4: Structure Flint Vol I Chp 4
€¢Structure of influenza virus
€¢Virus images at ViperDB
pdf Word YouTube
1/31 Lecture 5: Attachment and entry Flint Vol I Chp 5
€¢Influenza virus attachment to cells
€¢Influenza virus attachment to cells: Role of different sialic acids
€¢A single amino acid change switches avian influenza H5n1 and H7N9 viruses to human receptors
€¢Molecular movies of viruses
pdf Word YouTube
2/5 Lecture 6: RNA directed RNA synthesis Flint Vol I Chp 6
€¢Influenza viral RNA synthesis
pdf pdf YouTube
2/7 Exam I
2/12 Lecture 7: Transcription and RNA processing Flint Vol I Chp 8 through p277 Chp 10 through p364 pdf Word YouTube
2/14 Lecture 8: Viral DNA replication Flint Vol I Chp 9 pdf Word YouTube
2/19 Lecture 9: Reverse transcription and integration Flint Vol I Chp 7
€¢Museum pelts help date the Koala retrovirus
€¢Unexpected endogenous retroviruses
€¢
A retrovirus makes chicken eggshells blue
€¢
Reverse transcription animation
pdf Word YouTube
2/20 Lecture 10: Assembly Flint Vol I Chapters 12 and 13
€¢Packaging of the segmented influenza virus genome
€¢What if influenza virus did not reassort?
pdf Word YouTube
2/26 Lecture 11: The Infected Cell Flint Vol I Chp 14 pdf Word YouTube
2/28 Lecture 12: Infection basics Flint Vol II Chapters 1 and 2
€¢Transmission of influenza
€¢
Slow motion sneezing
€¢
Chikungunya an exotic virus on the move
€¢
Do the tropics have a flu season?
€¢
How mosquitoes spread viruses
pdf Word YouTube
3/5 Exam II
3/7 Lecture 13: Intrinsic and innate defenses Flint Vol II Chapter 3
€¢The inflammatory response
€¢
Natural antibody protects against viral infection
pdf pdf YouTube
3/12 Spring Recess
3/14 Spring Recess
3/19 Lecture 14: Adaptive immunity Flint Vol II Chapter 4 pdf pdf YouTube
3/21 Lecture 15: Mechanisms of pathogenesis Flint Vol II Chapter 5 pdf pdf YouTube
3/26 Lecture 16: Acute infections Flint Vol II Chapter 5
€¢Acute viral infections
€¢
Chronology of an acute infection
pdf pdf YouTube
3/28 Lecture 17: Persistent infections Flint Vol II Chapter 5 pdf pdf YouTube
4/2 Lecture 18: Transformation and oncogenesis Flint Vol II Chapter 6 pdf pdf YouTube
4/4 Exam III
4/9 Lecture 19: Vaccines Flint Vol II Chapter 8
€¢Influenza virus-like particle vaccine
€¢
Poliovirus vaccine safety
pdf pdf YouTube
4/11 Lecture 20: Antivirals Flint Vol II Chapter 9
€¢Treating hepatitis C by blocking a cellular microRNA
€¢
TWiV 270: Homeland virology (developing a smallpox antiviral)
pdf pdf YouTube
4/16 Lecture 21: Evolution Flint Vol II Chapter 10
€¢Virulence – a positive or negative trait for evolution?
€¢Increased fidelity reduces viral fitness
pdf pdf YouTube
4/23 Lecture 22: Emerging viruses Flint Vol II Chapter 11
€¢Heartland virus disease
pdf pdf YouTube
4/25 Lecture 23: HIV and AIDS Flint Vol II Chapter 6
€¢Blocking HIV infection with two soluble receptors
pdf pdf YouTube
4/30 Lecture 24: Viral gene therapy €¢Clinical benefit of gene therapy pdf pdf YouTube
5/7 Exam IV
Scroll to Top