Deprecated: Array and string offset access syntax with curly braces is deprecated in /home/virology/public_html/wp-content/plugins/easy-table/inc/Encoding.php on line 156
Deprecated: Array and string offset access syntax with curly braces is deprecated in /home/virology/public_html/wp-content/plugins/easy-table/inc/Encoding.php on line 158
Deprecated: Array and string offset access syntax with curly braces is deprecated in /home/virology/public_html/wp-content/plugins/easy-table/inc/Encoding.php on line 159
Deprecated: Array and string offset access syntax with curly braces is deprecated in /home/virology/public_html/wp-content/plugins/easy-table/inc/Encoding.php on line 160
Virology – Biology W3310/4310
Spring 2016
This Columbia University virology course is offered each year in the spring semester.
Prerequisite:Â Two semesters of a rigorous, molecularly-oriented Introductory Biology course (such as C2005), or the Instructor’s permission (vrr1@columbia.edu).
Course Name: Virology
Sessions:Â M, W 4:10 – 5:25 PM
Start date:Â Wednesday, January 20, 2016
Points:Â 3
Location:Â Northwest Corner 501
Course #:Â Biology W3310.001 or W4310.001
Instructor:Â Prof. V. Racaniello
Description
The basic thesis of the course is that all viruses adopt a common strategy. The strategy is simple:
1. Viral genomes are contained in metastable particles.
2. Genomes encode gene products that promote an infectious cycle (mechanisms for genomes to enter cells, replicate, and exit in particles).
3. Infection patterns range from benign to lethal; infections can overcome or co-exist with host defenses.
Despite the apparent simplicity, the tactics evolved by particular virus families to survive and prosper are remarkable. This rich set of solutions to common problems in host/parasite interactions provides significant insight and powerful research tools. Virology has enabled a more detailed understanding of the structure and function of molecules, cells and organisms and has provided fundamental understanding of disease and virus evolution.
The course will emphasize the common reactions that must be completed by all viruses for successful reproduction within a host cell and survival and spread within a host population. The molecular basis of alternative reproductive cycles, the interactions of viruses with host organisms, and how these lead to disease are presented with examples drawn from a set of representative animal and human viruses, although selected bacterial viruses will be discussed.
Textbook
The recommended textbook is Principles of Virology. Vol I: Molecular Biology, Vol. II: Pathogenesis and Control (S.J. Flint et al., Third Edition, ASM Press 2015).
Other course resources
1. Students should read Prof. Racaniello’s virology blog for information relevant to the course.
2. Students should listen to the weekly podcast “This Week in Virology”, produced by Prof. Racaniello, for additional material about viruses relevant to the course. You can subscribe to TWiV at iTunes.
3. Lecture slides (pdf) will be posted at this website before each class.
4. Videocasts of all lectures (slides plus audio) will be posted at this website.
Lecture Schedule, Spring 2016
Date | Topic | Reading | Slides | Study Questions | Video | ||
---|---|---|---|---|---|---|---|
1/20 | Lecture 1: What is a virus? | Flint Vol I Chp 1 •The virus and the virion •Cell size and scale •Pandoravirus |
YouTube | ||||
1/25 | Lecture 2: The infectious cycle | Flint Vol I Chp 2 •Influenza virus growth in eggs •Influenza hemagglutination inhibition assay •The amazing cells of Henrietta Lacks •The Wall of Polio •Small fragments of viral nucleic acid |
YouTube | ||||
1/27 | Lecture 3: Genomes and genetics | Flint Vol I Chp 3 •The Baltimore scheme •ViralZone |
YouTube | ||||
2/1 | Lecture 4: Structure | Flint Vol I Chp 4 •Structure of influenza virus •Virus images at ViperDB |
YouTube | ||||
2/3 | Lecture 5: Attachment and entry | Flint Vol I Chp 5 •Influenza virus attachment to cells •Influenza virus attachment to cells: Role of different sialic acids •A single amino acid change switches avian influenza H5n1 and H7N9 viruses to human receptors •Molecular movies of viruses |
YouTube | ||||
2/8 | Lecture 6: RNA directed RNA synthesis | Flint Vol I Chp 6 •Influenza viral RNA synthesis |
YouTube | ||||
2/10 | Exam I | ||||||
2/15 | Lecture 7: Transcription and RNA processing | Flint Vol I Chp 8 through p277 Chp 10 through p364 | YouTube | ||||
2/17 | Lecture 8: Viral DNA replication | Flint Vol I Chp 9 | YouTube | ||||
2/22 | Lecture 9: Reverse transcription and integration | Flint Vol I Chp 7 •Museum pelts help date the Koala retrovirus •Unexpected endogenous retroviruses •A retrovirus makes chicken eggshells blue |
YouTube | ||||
2/24 | Lecture 10: Translation | Flint Vol I Chp 11 | YouTube | ||||
2/29 | Lecture 11: Assembly | Flint Vol I Chapters 12 and 13 •Packaging of the segmented influenza virus genome •What if influenza virus did not reassort? |
YouTube | ||||
3/2 | Lecture 12: Infection basics | Flint Vol II Chapters 1 and 2 •Transmission of influenza •Slow motion sneezing •Chikungunya an exotic virus on the move •Do the tropics have a flu season? |
YouTube | ||||
3/7 | Exam II | ||||||
3/9 | Lecture 13: Intrinsic and innate defenses | Flint Vol II Chapter 3 •The inflammatory response •Natural antibody protects against viral infection |
YouTube | ||||
3/14 | Spring Recess | ||||||
3/16 | Spring Recess | ||||||
3/21 | Lecture 14: Adaptive immunity | Flint Vol II Chapter 4 | YouTube | ||||
3/23 | Lecture 15: Mechanisms of pathogenesis | Flint Vol II Chapter 5 | YouTube | ||||
3/28 | Lecture 16: Acute infections | Flint Vol II Chapter 5 •Acute viral infections •Chronology of an acute infection |
YouTube | ||||
3/30 | Lecture 17: Persistent infections | Flint Vol II Chapter 5 | YouTube | ||||
4/4 | Lecture 18: Transformation and oncogenesis | Flint Vol II Chapter 6 | YouTube | ||||
4/6 | Exam III | ||||||
4/11 | Lecture 19: Vaccines | Flint Vol II Chapter 8 •Influenza virus-like particle vaccine •Poliovirus vaccine safety |
YouTube | ||||
4/13 | Lecture 20: Antivirals | Flint Vol II Chapter 9 •Treating hepatitis C by blocking a cellular microRNA •TWiV 270: Homeland virology (developing a smallpox antiviral) |
YouTube | ||||
4/18 | Lecture 21: Evolution | Flint Vol II Chapter 10 •Virulence – a positive or negative trait for evolution? •Increased fidelity reduces viral fitness |
YouTube | ||||
4/20 | Lecture 22: Emerging viruses | Flint Vol II Chapter 11 •Heartland virus disease |
YouTube | ||||
4/25 | Lecture 23: Unusual infectious agents | Flint Vol II Chapter 12 •Detecting prions by quaking and shaking •Prions in plants •Prions in the emergency room •Prion disease from contaminated beef |
YouTube | ||||
4/27 | Lecture 24: HIV and AIDS | Flint Vol II Chapter 6 •Blocking HIV infection with two soluble receptors |
YouTube | ||||
5/2 | Lecture 25: Viral gene therapy | •Clinical benefit of gene therapy | YouTube | ||||
5/11 | Exam IV | ||||||