• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

ZMapp

How ZMapp antibodies bind to Ebola virus

25 November 2014 by Vincent Racaniello

antibodies bound to Ebola virus GPZMapp, a mixture of three antibodies against Ebola virus, became a household name after it was used to treat two Americans who were infected while working in Liberia. The structure of these antibodies bound to the Ebola virus glycoprotein suggest how they inhibit infection and ways to improve ZMapp.

The three monoclonal antibodies that comprise ZMapp (called c13C6, c2G4, and c4G7) were produced by immunizing mice with a recombinant vesicular stomatitis virus in which the glycoprotein was replaced with that from Ebola virus. Antibodies that bound the viral glycoprotein and protected mice from infection were identified, and three were made to resemble human antibodies and produced in tobacco plants. Ecco Zmapp!

Embedded in the membrane of the filamentous Ebola virus particle are many copies of the Filovirusglycoprotein, seen as club-shaped spikes in the image to the right (image credit: ViralZone). The viral glycoprotein is essential for entry of the virus into cells. The antibodies in ZMapp are directed against the viral glycoprotein.

To determine how the antibodies bind the virus particle, they were individually mixed with purified Ebola virus glycoprotein, and the structures were determined by electron microscopy and image reconstruction. The results, shown in the illustration, indicate precisely where each antibody binds to the Ebola virus glycoprotein. The individual antibodies colored red (c2G4), yellow (c4G7), and purple (c13C6) are bound to a single Ebola virus glycoprotein in white, with the viral membrane below (Image credit).

The structures reveal that c13C6 (purple) binds at the tip of the viral glycoprotein, perpendicular to the plane of the viral membrane. The other two antibodies (red, yellow) bind at the base of the viral glycoprotein. Their binding sites overlap but are not identical (the Ebola virus glycoprotein is a trimer, and in the image, the yellow and red antibodies are shown binding to different subunits for clarity). Two other antibodies that block Ebola virus infection also bind at the base of the glycoprotein.

Antibody c13C6, which binds to the tip of the viral glycoprotein, does not neutralize viral infectivity. Nevertheless, it can protect animals from Ebola virus infection. This observation suggests that the c13C6 antibody may work in concert with complement, a collection of serum proteins, to block virus infection. It is not known why c13C6 antibody is non-neutralizing, but one possibility is that it binds to a part of the viral glycoprotein that is removed by an endosomal protease, cathepsin, before receptor binding in late endosomes.

Antibodies c2G4 and c4G7, which bind to the membrane-proximal part of the viral glycoprotein, neutralize viral infectivity. How they do so is not known, but one possibility is that they prevent structural changes of the viral protein that are essential for the fusion with the endosomal membrane, a process that delivers the viral nucleic acid into the cell cytoplasm.

These studies reveal two general areas of the Ebola virus glycoprotein that are important targets for antibodies that protect animals from Ebola virus infection. Those directed at the base of the glycoprotein neutralize infectivity while those that bind the tip do not. This information can now be used to isolate additional antibodies that bind either site. These can be used in animal protection studies to design mixtures that are even more potent than ZMapp.

Filed Under: Basic virology, Information Tagged With: antibody, ebola virus, ebolavirus, electron microscopy, monoclonal antibody, neutralize, protein structure, viral, virology, virus, ZMapp

Could the Ebola virus epidemic have been prevented?

30 September 2014 by Vincent Racaniello

Ebola is comingThe cover of this week’s issue of Businessweek declares that ‘Ebola is coming’ in letters colored like blood, with the subtitle ‘The US had a chance to stop the virus in its tracks. It missed’. Although the article presents a good analysis of the hurdles in developing antibody therapy for Ebola virus infection, the cover is overstated. Why does Businessweek think that Ebola virus is coming to the US? (there is no mention of this topic in the article). Are we sure that antibody therapy would have stopped the outbreak? (no, as stated in the article).

How the U.S. Screwed Up in the Fight Against Ebola is an analysis of why ZMapp, the cocktail of monoclonal antibodies that block infection with Ebola virus, has not yet been approved for use in humans. ZMapp was given to two American workers who had become infected with the virus while working in Africa. The two workers recovered, but the role of ZMapp in their recovery is unknown – as the authors of the article note. Although ZMapp can prevent lethal infection of nonhuman primates with Ebola virus, it is not known if it would work in humans. Answering that question requires a clinical trial, and the article explores why this phase was not done years ago. Only after the large Ebola virus outbreak in west Africa did the US provide funds to conduct a phase I trial of the drug.

The article discusses how development of ZMapp languished for years, because the US government did not consider the Ebolaviruses to be a pressing problem. In hindsight they were wrong, and now anyone can seem smart by saying we should have pushed development of Ebola virus vaccines and therapeutics.

The real question is whether we will learn from this experience, and be better prepared for the next viral outbreak. Just because infections are rare or geographically localized should not lessen their importance, as these features can change. Knowing the animal source of a viral infection may also lead to developing ways to prevent infections. For example, because people acquire Hendra virus from horses, immunization of these animals should prevent human infections.

What other antiviral vaccines and drugs should we be developing? This question is difficult to answer because we discover new viruses regularly and making therapeutics for all of them is not possible. Testing an antiviral drug or vaccine against rare viruses is difficult because identifying populations that are at risk for infection may be a hit or miss proposition.

Influenza viruses are at the top of the list for vaccine and drug development, because nearly everyone gets infected. Other viruses we should be ready for include SARS and MERS coronaviruses, dengue virus, chikungunya virus, Lassa virus, Nipah and Hendra viruses. I’m sure you can think of other viruses that belong on this list.

Developing antiviral vaccines and drugs is expensive. For some of the viruses on my list (dengue, chikungunya) there are currently large enough markets that permit involvement of for-profit pharmaceutical companies. Development of therapeutics against viruses that cause rare infections must be supported largely by governments.

The US does not spend enough money on basic life sciences research. We do spend a great deal of money on the military. President Obama recently declared Ebola virus to be a top national security priority. Why not view all infectious diseases in this way, to ensure that they receive the funding for research that they deserve?

While the Businessweek cover is misleading, intended to stimulate sales, the article does make us think about the problems we confront when dealing with rare but lethal diseases. No one should conclude that Ebola virus outbreak in Africa could have been prevented, because antiviral therapies have not yet been tested in humans. But we won’t know if we never do the research.

Filed Under: Basic virology, Commentary, Information Tagged With: antiviral, ebola virus, ebolavirus, epidemic, monoclonal antibody therapy, outbreak, vaccine, viral, virology, virus, West Africa, ZMapp

Ebolavirus vaccines and antivirals

8 August 2014 by Vincent Racaniello

guinea-liberia-sierra-leone-2014As the epidemic of Zaire ebolavirus in Western Africa continues (1,779 cases and 961 deaths in four countries), many are questioning why there are no means of preventing or stopping infection. In the past two decades there has been substantial research into developing and testing active and passive vaccines and antiviral drugs, although none have yet been licensed for use in humans.

Using antibodies to treat infection with ebolaviruses with antibodies is probably the best known therapy, because it was used to treat a two Americans who were infected while working in Liberia. They received a mixture of three monoclonal antibodies (called ZMapp) which had been previously shown to block infection of cells with ebolaviruses, and prevent lethal infection of non-human primates when given within 24-48 hours after infection. These are mouse monoclonal antibodies that have been ‘humanized’ so that when given to people they do not induce an antibody response against the antibodies. Humanization involves changing the amino acids of the antibody molecule from mouse to human, except in the part of the antibody that binds antigen. The antibodies are then synthesized in tobacco plants and purified. Administering anti-viral antibodies to patients, also called passive immunization, was done long before vaccines were available. Serum from patients who had recovered from a particular disease would be given to others who had recently been infected, in order to prevent disease. Such therapy was used to save the life of virologist Jordi Casals, who had become infected with Lassa virus while isolating the virus from the blood of a patient, Penny Pinneo. The serum administered to Casals was obtained from Pinneo, who had recovered from the infection. The American doctor infected with Zaire ebolavirus while working in Liberia was also given serum from a boy who had recovered from infection.

As ZMapp has not yet been subjected to human clinical trials to determine its safety and efficacy, its use in an infected human is considered unusual. A phase I clinical trial needs to be done to ensure that the preparation of monoclonal antibodies is safe in humans. Determining whether monoclonal antibody therapy for ebolavirus infection is effective is more difficult. Such testing could only be done during an outbreak, during which it would not be ethical to withhold treatment from the control group. Nevertheless it is clear that such mixtures of monoclonal anti-viral antibodies could potentially save many lives during outbreaks.

While passive immunization has value in saving lives, its protection is temporary: the antibodies given to patients do not endure. A better approach is immunization, which not only induces anti-viral antibodies, but creates immune memory, so that subsequent infections are accompanied by another round of antibody production. The catch is that it takes about two weeks after immunization for antibodies to reach sufficient protective levels. Nevertheless, a vaccine would likely have had substantial impact on the current outbreak, which began in March 2014 and has continued for 5 months.

A number of experimental vaccines against ebolaviruses are in development. In one approach, the glycoprotein of vesicular stomatitis virus is replaced with the corresponding protein of different ebolaviruses. These vaccines protect non-human primates from lethal infection. A similar approach using an attenuated rabies virus to deliver the ebolavirus glycoprotein also protected non-human primates from infection, as did immunization with an adenovirus encoding the ebolavirus glycoprotein.  This vaccine candidate has been shown to be safe and immunogenic in phase I clinical trials. Another vaccine approach entails production of the ebolavirus glycoprotein in E. coli. Immunization of mice with the purified protein leads to the production of neutralizing antibodies. Because protein-based vaccines do not replicate, the immune response may need to be boosted by using an adjuvant that stimulates the innate immune system and leads to better antibody production. A double-stranded RNA adjuvant has been shown to augment the immune response against a non-infections, virus-like particle vaccine containing the Ebola virus glycoprotein but not the viral genome.

Antivirals certainly have a place in control of viral disease, and a number of promising candidates to control infection with ebolaviruses have been developed. One is a nucleoside analog which is incorporated into RNA by the viral RNA polymerase and leads to chain termination. It blocks replication of ebolaviruses in culture cells, and protects mice and nonhuman primates from lethal infection. This compound, called BCX4430, is a broad spectrum antiviral that inhibits the replication of not only members of the Filoviridae, but also Arenaviridae, Bunyaviridae, Orthomyxoviridae, Picornaviridae, Paramyxoviridae, Flaviviridae, Coronaviridae. Another inhibitor of viral RNA synthesis is favipiravir, which has the advantage of being in late stage clinical development for the treatment of influenza. This compound inhibits replication of ebolaviruses in cultured cells and reduces disease severity and mortality in a mouse model of disease.

It is likely that the extent of the current outbreak of Ebola virus disease, the largest to date, will provide impetus to move some of these treatments into human trials. But consider that all the research on active and passive vaccines and antivirals for ebolaviruses required work in BSL-4 laboratories. Those who call for the shuttering of BSl-4 laboratories need to take note and move away from their unrealistic and unreasonable position.

Filed Under: Basic virology, Information Tagged With: antiviral, ebola virus, ebolavirus, filovirus, Guinea, hemorrhagic fever, Liberia, monoclonal antibody therapy, Sierra Leone, vaccine, viral, virology, virus, ZMapp

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.