• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

virophage

Pandoraviruses Are Not Alive

3 December 2020 by Gertrud U. Rey

by Gertrud U. Rey

Viruses are universally defined as “obligate intracellular parasites” because they cannot replicate outside of a host cell and depend on that cell and its various metabolic factors for replicating their genome. Based on this definition, most virologists agree that viruses are not alive. 

When giant viruses were initially discovered, they were found to violate multiple principles of virology. For example, mimiviruses can be parasitized by small viruses called virophages that can only replicate if they confiscate the replication factors of a co-infecting mimivirus. Because the virophage also inactivates the mimivirus during this process, some interpret this scenario as a virus infecting another virus, a previously unheard-of phenomenon. In turn, mimiviruses have defense mechanisms that inhibit virophage replication, a property that is analogous to eukaryotic anti-viral interferon-mediated defenses. Additionally, mimiviruses encode proteins that participate in protein synthesis – another unusual property for a virus.

Some mimiviruses also have a gene that codes for citrate synthase, an enzyme involved in the Krebs cycle. The Krebs cycle is integral to cellular metabolism in living organisms because it ultimately powers the production of adenosine triphosphate (ATP), the cell’s molecular currency of energy. The cycle takes place in the matrix of the mitochondrion (pictured), where it feeds electrons into a string of complexes in the inner mitochondrial membrane known as an electron transport chain. As electrons move down this chain, they release energy, which is used by membrane-resident enzymes to pump protons from the matrix across the membrane into the intermembrane space (pictured as “proton pump”). This produces a concentration gradient, which is a difference in the concentration of protons on one side of the membrane compared to the other. To achieve equilibrium, the protons move back into the matrix through the action of another membrane resident enzyme called ATP synthase, which captures the energy of the protons to produce ATP. In other words, a concentration gradient across a membrane produces an electrical potential and is usually associated with the ability to generate energy in living cells.    

Based on the knowledge that some mimiviruses encode a component of the Krebs cycle, a group in Marseille wanted to determine whether giant viruses can produce their own energy. To do this, they infected a species of amoeba, the natural host of giant viruses, with Pandoravirus massiliensis, a virus with the largest known viral genome encoding many proteins with unknown functions. 

The authors isolated viral particles from P. massiliensis-infected amoebae and treated them with P. massiliensis-specific antibodies and a dye that detects electrical potential. This technique produced fluorescence in the membranes of P. massiliensis particles, indicating the presence of an electrical potential, in contrast to control virus particles isolated from cells infected with cowpoxvirus, which did not fluoresce. To confirm that the observed fluorescence represented a real concentration gradient with potential for electron transport, the authors treated the P. massiliensis particles with CCCP, a chemical that inhibits movement of electrons. This treatment led to diminished membrane fluorescence, suggesting that the observed membrane potential was real. Interestingly, the intensity of the electrical potential could be modified with addition of variable concentrations of acetyl-CoA, a known regulator of the Krebs cycle. 

In an effort to determine how the P. massiliensis genome could play a role in energy metabolism, the authors did a sequence alignment with a database of conserved sequence domains known to be involved in energy metabolism. This revealed that P. massiliensis contains genes for nearly all enzymes in the Krebs cycle, but when these genes were cloned and expressed in bacterial cells, only one of them, isocitrate dehydrogenase, was functional. In agreement with this observation, the authors also found that mature P. massiliensis particles released from amoeba cells did not produce any ATP. Nevertheless, when amoeba cells were infected with P. massiliensis that were pre-treated with CCCP, they produced a lower number of viral particles, suggesting that the observed membrane potential might play a role during infection. 

The authors conclude that these findings “position this virus as a form of life.” I disagree with this conclusion for the following reasons. Although P. massiliensis encodes numerous Krebs cycle enzymes, only one of them seems to be functional. Furthermore, P. massiliensis particles did not produce any ATP, meaning that this virus cannot produce its own energy. Even if it did, it still depends on the host cell for many other replication factors, including those needed to make proteins. As long as a virus requires a cell for replication, it is still a virus, and hence not alive.

Still, these findings are interesting and remind me of bacteriophage ϕKZ, a giant virus discussed in a previous post. After infecting a bacterial cell, ϕKZ assembles a nucleus-like shell, which shields the viral DNA from bacterial immune enzymes. Any discovery that reveals genes in viruses that suggest the potential for cell-like functions raises at least a couple of questions. Are these genes remnants of cellular genes, thereby suggesting that these viruses originated from ancient parasitic cells? Or did these giant viruses acquire the genes over time to gain more independence from host cells? Either way, pandoraviruses are aptly named because their study continues to yield surprising discoveries.

Filed Under: Basic virology, Gertrud Rey Tagged With: acetyl-CoA, amoeba, ATP, citrate synthase, citric acid cycle, concentration gradient, electrical potential, electron transport chain, electrons, energy, giant virus, isocitrate dehydrogenase, Krebs cycle, living cell, living organism, membrane potential, metabolism, mimivirus, mitochondrion, Pandoravirus, Pandoravirus massiliensis, protons, TCA cycle, virophage

TWiEVO 49: A giant podcast on giant viruses

29 November 2019 by Vincent Racaniello

Rich joins Nels and Vincent for a debriefing on the 4th Ringberg Symposium on Giant Virus Biology in Tegernsee, Germany.

Click arrow to play
Download TWiEVO 49 (68 MB .mp3, 113 min)
Subscribe (free): iTunes, Google Podcasts, RSS, email

Become a patron of TWiEVO

Show notes at microbe.tv/twievo

Filed Under: This Week in Evolution Tagged With: ecology, evolution, giant virus, horizontal gene transfer, natural selection, NCLDV, Nucleocytoplasmic large DNA containing viruses, phycodnavirus, Ringberg, trisymmetron, viral, virology, virophage, virus, viruses

TWiV 419: The selfless gene

11 December 2016 by Vincent Racaniello

The TWiVrific gang reveal how integration of a virophage into the nuclear genome of a marine protozoan enhances host survival after infection with a giant virus.

You can find TWiV #419 at microbe.tv/twiv, or listen below.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV419.mp3″]

Click arrow to play
Download TWiV 419 (64 MB .mp3, 105 min)
Subscribe (free): iTunes, RSS, email

Become a patron of TWiV!

Filed Under: This Week in Virology Tagged With: altruism, cafeteria roenbergensis, CroV, giant virus, lysogen, mavirus, mimivirus, prophage, protozoan, viral, virology, virophage, virus, viruses

Do giant viruses have a CRISPR-like immune system or a protein restriction factor?

30 June 2016 by Vincent Racaniello

Zamilon virophageA battle is brewing between two research groups in Marseille, France that are involved in the discovery and study of giant viruses. Didier Raoul and colleagues believe that they have discovered a CRISPR-like, DNA based defense system in mimivirus that confers resistance to virophage (paper link). Claverie and Abergel disagree: they think that the defense system involves proteins, not nucleic acids (paper link).

Virophages are DNA viruses that can only replicate in cells infected by giant viruses like mimivirus. Their name, which means ‘virus eater’, comes from the observation that they inhibit mimivirus replication. A specific virophage called Zamilon was discovered that can inhibit the replication of lineage B and C mimivirus but not lineage A.

Examination of the DNA sequences of 60 different mimivirus strains revealed that the genomes of lineage A contained a 28 nucleotide sequence identical to Zamilon virophage. This sequence was not found in any lineage B mimivirus and in only one out of 19 lineage C mimiviruses. In addition, a 15 nucleotide subset of this sequence is repeated four times in the lineage B and C mimivirus genomes.

Near the 15 nucleotide Zamilon-derived repeated sequences in lineage B and C mimivirus genomes are genes encoding several proteins related to components of the bacterial CRISPR-Cas system. These include a nuclease, an RNAse, and an ATP-dependent DNA helicase.

The CRISPR system provides defense against invading DNA. When a foreign DNA, such as a bacteriophage genome, enters a bacterial cell, some is fragmented and integrated into the CRISPR locus as a ’spacer’ (sequences in the foreign DNA are called ‘protospacers’). Following transcription, CRISPR RNAs (crRNA) are processed by a multiprotein complex to produce ~60 nucleotide RNAs. When the spacer of a crRNA base pairs with a complementary sequence in an invading DNA molecule, CRISPR-associated endonucleases cleave the DNA. The integration of the sequences of the invading DNA into the host cell genome, from which they can be mobilized in the form of crRNAs, provides a form of “memory” and acquired immunity. It should be noted that there are six known types of CRISPR systems that differ in their components and mechanisms.

Because the CRISPR-Cas system is an adaptive immune system that protects bacteria and Archaea from virus infections and invasion of foreign DNA, the authors propose that they have discovered a new adaptive immune system that protects mimiviruses from virophage infection. They call this system mimivirus virophage resistance element, or MIMIVIRE.

The authors provide experimental support for their hypothesis by showing that silencing the genes encoding the endonuclease, the helicase, and the repeated insert using siRNA allows Zamilon replication in mimivirus-infected cells.

Claverie and Abergel think that Raoult and colleagues are wrong (paper link). They provide three reasons to dispute their findings, and ‘propose a simpler protein-based interaction model that explains the observed phenomena without having to extend the realm of adaptive immunity to the world of eukaryotic viruses, a revolutionary step that would require stronger experimental evidences.’

The first problem is that mimivirus and Zamilon virophage replicate in the same location in the infected cell, making a CRISPR-like defense system difficult to conceptualize. In contrast, CRISPR sequences reside in the bacterial genome, from which RNAs are produced that target the destruction of invading DNAs elsewhere in the cell.

The second problem is that the Zamilon sequences in the mimivirus genome are not regularly spaced or flanked by recognizable repeats, a hallmark of the CRISPR system (the name stands for ‘clustered regularly interspersed short palindromic repeats). However it should be noted that type VI CRISPR systems have no CRISPR locus and likely function via mechanisms that are different from other CRISPR systems.

Finally, Claverie and Abergel argue that there is no way for the proposed nucleic acid defense system to distinguish between the virophage and the virophage sequences in the mimivirus genome. In some CRISPR systems this discrimination is achieved by protospacer adjacent motifs (PAMs), short (2-5 nt) sequences next to the invader protospacer sequences that are recognized by the endonuclease complex guided by the crRNA. PAMs are not present in the bacterial genome, sparing it from endonucleolytic cleavage. Nevertheless, non PAM-based mechanisms of discriminating invader from host are known, for example, in the type III CRISPR system.

If Raoult and colleagues have not discovered a CRISPR-like mimivirus defense system, then why would silencing the genes encoding CRISPR-like proteins allow Zamilon replication? Claverie and Abergel think that it is not the 15 nucleotide Zamilon repeats that are important to mimivirus, but the encoded amino acids: Asp-Asn-Glu-Ser (DNES in one letter code). They believe that DNES is a motif present in proteins that block Zamilon replication by as yet unidentified mechanisms.

Many cellular proteins have been identified that interfere with virus replication, such as those encoded by interferon induced genes (ISGs). DNES containing proteins that inhibit Zamilon replication would be conceptually analogous, except that they are encoded by a virus, not the host.

Claverie and Abergele appear to have a strong case that mimivirus defense against Zamilon virophage is mediated by protein, not nucleic acid, but further experimentation is certainly needed to support their position. Nevertheless they recognize that the discovery by Raoult and colleagues “remains fascinating even if it falls short of demonstrating the existence of a CRISPR-Cas-like adaptive immune system”.

Filed Under: Basic virology, Information Tagged With: Cas, crispr, defense, mimivirus, protospacer, viral, virology, virophage, virus, viruses, Zamilon

TWiV 206: Viral turducken

11 November 2012 by Vincent Racaniello

On episode #206 of the science show This Week in Virology, Vincent, Alan, Dickson, and Kathy discuss how the innate immune response to viral infection influences the production of pluripotent stem cells, and the diverse mobilome of giant viruses.

You can find TWiV #206 at www.microbe.tv/twiv.

Filed Under: This Week in Virology Tagged With: induced pluripotent stem cell, innate immunity, iPSC, lentille virus, mimiviridae, mimivirus, mobilome, nuclear reprogramming, provirophage, retrovirus, TLR3, toll-like receptor, transpoviron, viral, virology, virophage, virus

Brent Johnson on virophage

28 July 2011 by Vincent Racaniello

Virophage is the name coined for viruses such as Sputnik and Mavirus that can only replicate in cells infected with a helper virus, whose replication they inhibit. I’ve never liked the name – it means virus eater – and neither does Brent Johnson, a virologist at Brigham Young University:

“I believe the term ‘virophage’ is unfortunate because it implies one virus is infecting another virus and eating it. The small virus isn’t infecting another virus, it’s just using it to assist in replication, which is consistent with the needs of a defective virus.” he explains. He prefers calling the giant viruses “megaviruses,” and considers the name “Megavirus-Associated Virus (MAV) more consistent with currently accepted virus nomenclature.”

For more discussion, see the article by Marsha Stone in the July 2011 Microbe.

Filed Under: Information Tagged With: mavirus, sputnik, viral, virology, virophage, virus

  • Go to page 1
  • Go to page 2
  • Go to Next Page »

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.