• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

virome

Bats harbor many viral sequences

3 November 2010 by Vincent Racaniello

How large is the zoonotic pool – all the animal viruses that could one day infect humans? Assuming that there are 50,000 vertebrates on earth, each with 20 viruses, the number is one million – probably a vast underestimate. Determining just how many viruses exist in a variety of animal species is technically feasible, limited only by the number of hosts that can be sampled. A study of the virome of several North America bats reveals that these animals – which constitute 25% of all the known mammalian species – harbor a very large collection of viral sequences.

Advances in nucleotide sequencing technologies (deep sequencing) have made it possible in recent years to study the virome – the genomes of all viruses in a host – in human blood, diarrhea, and respiratory secretions; grapevines, and feces of horses and bats. The latter mammals are a particularly important subject because it is known that they harbor the predecessors of several important human viruses, including SARS coronavirus, ebolavirus, marburgvirus, Nipah, Hendra, and rabies viruses. Since there are about 1200 known species of bats, the potential for future human zoonoses is significant.

A multicenter group comprising virologists* and chiropterists (scientists who study bats) has examined the virome of three North American bat species: big brown bats (Eptesicus fuscus), tri-colored bats (Perimyotis subflavus), and little brown myotis (Myotis lucifugus). Deep sequencing was used to analyze fecal and oral samples from 41 bats captured on one night in Western Maryland. The results provide a comprehensive glimpse of the bat virome.

The 576,624 sequence ‘reads’ (a read is the result of a single sequence reaction, in this study ~250 nucleotides) on six pools of fecal samples revealed an amazing diversity of viral sequences (figure), with representatives of human, other mammals, insect, bacteriophage, fish, shrimp, protist, reptile, plant, avian, fungi, algae, and marine viruses. Among the interesting findings are sequences of three novel coronaviruses from big brown bats. Many coronaviruses have previously been found in bats; the results of this study provide more evidence that these mammals are likely to be sources of future human infections.

Novel viruses of plants and insects were also identified in fecal samples from all bats. This observation can be explained by the bats’ prodigious appetite for insects, which harbor both insect or plant viruses (the latter transmitted to plants by insect vectors). It seems unlikely that these viruses replicate in bats, but pass through the gastrointestinal tract into the feces.

Perhaps not surprisingly (given the diversity of bacteria that colonize mammalian intestinal tracts), sequences of novel bacteriophages were also identified in fecal samples. One appears to have high sequence identity with a bacteriophage that infects the plague bacterium Yersina pestis. Curiously, such bacteria are not known to colonies animals in the northeastern United States. A second bacteriophage infects strains of E. coli associated with human illnesses. These findings suggest that bats could be involved in the spread of human bacterial pathogens.

The main viral sequences identified in pooled oral samples were of a novel cytomegalovirus. These viruses appear to be common in bats, and have been been detected in many previous studies.

One question that arises from these findings is whether bats are unique in harboring a large collection of diverse viruses. The answer to this question awaits studies of the viromes of other wild animals.

Viral discovery by massive sequencing will no doubt identify many new viruses in a wide range of species. However, this technology cannot answer some of the more intriguing biological questions, such as which hosts support viral replication, and whether it is associated with disease. Answers to these questions will require construction of complete DNA copies of viral genomes and recovery of infectious viruses by transfection of cells in culture.

The title of this post is ‘Bats harbor many viral sequences’, not ‘many viruses’. That’s because no infectious viruses were identified – only parts of their genomes. If you wish to conclude that a certain virus infects bats, you must either isolate the virus in cell culture, or show that the entire viral genome is present in tissues or fluids.

*including Eric F. Donaldson and Matt Frieman, who spoke about this work on TWiV 90 and 65.

Donaldson EF, Haskew AN, Gates JE, Huynh J, Moore CJ, & Frieman MB (2010). Metagenomic Analysis of the Virome of three North American Bat Species: Viral Diversity Between Different Bat Species that Share a Common Habitat. Journal of virology PMID: 20926577

Filed Under: Basic virology, Information Tagged With: bacteriophage, bat, coronavirus, herpesvirus, viral, virology, virome, virus

TWiV 91: You’re an ERVous wreck

18 July 2010 by Vincent Racaniello

Hosts: Vincent Racaniello, Dickson Despommier, Alan Dove, Rich Condit, and Welkin Johnson

On episode #91 of the podcast This Week in Virology, Vincent, Dickson, Alan, Rich and Welkin discuss the nature, origin, and evolution of endogenous retroviruses (ERVs), and the recent finding of endogenous filovirus genomes in mammals.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV091.mp3″]

Click the arrow above to play, or right-click to download TWiV #91 (64 MB .mp3, 89 minutes)

Subscribe to TWiV (free) in iTunes , at the Zune Marketplace, by the RSS feed, or by email, or listen on your mobile device with Stitcher Radio.

Links for this episode:

  • Welkin blogs at Small Things Considered
  • Constructing primate phylogenies from ancient retrovirus sequences (PNAS)
  • Filoviruses are ancient and integrated into mammalian genomes (BMC Evol Biol)
  • Synthetic cells: Momentous breakthrough or ethical morass? (To The Point)
  • Creation of a bacterial cell (Science)
  • Comments on the synthetic cell (Small Things Considered)
  • TWiV rap: T-Number Index by G-Unit (mp3) and Vincent (mp3) (thanks, Darrick and Scott!)
  • Letters read on TWiV 91

Weekly Science Picks

Welkin – Advice for a Young Investigator by Santiago Ramon y Cajal
Rich –
How microbes define and defend us
Dickson – H1N1 virus lacks 1918 virus killer protein
Alan –
The Xtal Set Society
Vincent – Antibodies and the quest for an AIDS vaccine

Send your virology questions and comments (email or mp3 file) to twiv@microbe.tv or leave voicemail at Skype: twivpodcast. You can also post articles that you would like us to discuss at microbeworld.org and tag them with twiv.

Filed Under: This Week in Virology Tagged With: endogenous retrovirus, ERV, filovirus, herv, integration, nirv, retrovirus, venter, viral, virology, virome, virus

TWiV 90: Guano happens

11 July 2010 by Vincent Racaniello

Hosts: Vincent Racaniello, Alan Dove, Rich Condit, and Eric F. Donaldson

On episode #90 of the podcast This Week in Virology, Vincent, Alan, Rich and Eric discuss identification of viruses in Northeastern American bats, vaccinia virus infection after sexual contact with a military vaccinee, and identification of a new flavivirus from an Old World bat in Bangladesh.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV090.mp3″]

Click the arrow above to play, or right-click to download TWiV #90 (64 MB .mp3, 89 minutes)

Subscribe to TWiV (free) in iTunes , at the Zune Marketplace, by the RSS feed, or by email, or listen on your mobile device with Stitcher Radio.

Links for this episode:

  • Vaccinia virus infection after sexual contact with vaccinee
  • Smallpox vaccination overview
  • Smallpox vaccine lesions (jpg)
  • Smallpox hospital, Roosevelt Island, NY (photo 1, photo 2)
  • Isolation of a flavivirus from bats in Bangladesh (PLoS Pathogens)
  • Review on hepatitis G virus
  • Dickson has been teaching at Singularity University and fishing in Bozeman MT (jpg)
  • Letters read on TWiV 90

Weekly Science Picks

Eric – Year of Darwin by Sean Carroll
Rich –
March of the Penguins
Alan –
Standing-height desks
Vincent – DengueWatch (thanks Richard!)

Send your virology questions and comments (email or mp3 file) to twiv@microbe.tv or leave voicemail at Skype: twivpodcast. You can also post articles that you would like us to discuss at microbeworld.org and tag them with twiv.

Filed Under: This Week in Virology Tagged With: bat, deep sequencing, flavivirus, gbv, hepatitis g virus, smallpox, vaccination, vaccine, vaccinia, viral, virology, virome, virus

TWiV 65: Matt’s bats

10 January 2010 by Vincent Racaniello

Hosts: Vincent Racaniello, Alan Dove, and Matthew Frieman

Vincent, Alan, and Matt discuss a project to study the RNA virome of Northeastern American bats, failure to detect XMRV in UK chronic fatigue syndrome patients, and DNA of bornavirus, an RNA virus, in mammalian genomes.

This episode is sponsored by Data Robotics Inc. To receive $50 off a Drobo or $100 off a Drobo S, visit drobostore.com and use the promotion code VINCENT.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV065.mp3″]

Click the arrow above to play, or right-click to download TWiV #65 (58 MB .mp3, 80 minutes)

Subscribe to TWiV (free) in iTunes , at the Zune Marketplace, by the RSS feed, or by email.

Links for this episode:

  • Mist net Indigo Tunnel, Western Maryland Railway (jpg)
  • Eric Donaldson and Amy Haskew with bat in holding bag (jpg)
  • XMRV not detected in UK chronic fatigue syndrome patients (virology blog)
  • Bornavirus DNA in the mammalian genome
  • Arenavirus DNA can be integrated into the cell genome
  • Rabid raccoons in Central Park, NYC

Weekly Science Picks
Matt 100 Incredible lectures from the world’s top scientists
Alan The Amateur Scientist CD
Vincent The Immortal Life of Henrietta Lacks by Rebecca Skloot

Send your virology questions and comments (email or mp3 file) to twiv@microbe.tv or leave voicemail at Skype: twivpodcast. You can also post articles that you would like us to discuss at microbeworld.org and tag them with twiv.

Filed Under: This Week in Virology Tagged With: bat, bornavirus, CFS, chronic fatigue syndrome, DNA, genome, rabies, raccoon, retrovirus, RNA, TWiV, viral, virology, virome, virus, xmrv

The abundant and diverse viruses of the seas

20 March 2009 by Vincent Racaniello

earthWhat is the most abundant biological entity in the oceans?

Viruses, of course! The quantity and diversity of viruses in the seas are staggering. Each milliliter of ocean water contains several million virus particles – a global total of 1030 virions! If lined up end to end, they would stretch 200 million light years into space. Viruses constitute 94% of all nucleic-acid containing particles in the sea and are 15 fold more abundant than bacteria and archaea.

Because viruses kill cells, they have a major impact on ocean ecology. About 1023 virus infections occur each second in the oceans; in surface waters they eliminate 20-40% of prokaryotes daily. Viral lysis converts living organisms into particulate matter that becomes carbon dioxide after respiration and photodegradation. Cell killing by viruses also liberates enough iron to supply the needs of phytoplankton, and leads to the production of dimethyl sulphoxide, a gas that influences the climate of the Earth. Because of these activities, marine viruses have a significant impact on global microbial communities and geothermal cycles.

Most of the marine viruses are bacteriophages, but there are also significant numbers that infect eukaryotic phytoplankton, invertebrates, and vertebrates. The best studied viruses are those that infect commercially important species. Novel viruses are frequently discovered; for example, white spot syndrome virus of panaeid shrimp is a member of a new virus family. Viruses of commercially important finfish include herpesviruses, reoviruses, nodaviruses, birnaviruses, and rhabdoviruses. How these viruses are transmitted among marine species is not understood. Many viruses move between marine and fresh waters, posing threats to fishing industries. The rhabdovirus viral hemorrhagic septicemia virus, which causes disease in European farmed trout, has been isolated from 40 marine fish species, from fish farms in Alaska, and from fish in the Great Lakes.

Many ocean viruses cause disease in marine mammals. Phocid distemper virus is a morbillivirus of Arctic phocid seals that has killed thousands of harbor seals in Europe. Similar viruses kill dolphins and other cetaceans. Many other viruses infect marine mammals and even cause disease in humans, including adenoviruses, herpesviruses, parvoviruses, and caliciviruses. The natural reservoirs of most of these viruses are unknown.

Massive sequencing projects have been used to provide information on the diversity of marine viruses. In these studies, seawater is filtered to remove large particles, virions are purified by centrifugation, and nucleic acids are extracted, amplified, and subjected to pyrosequencing. Bioinformatic approaches are used to sift through megabase data sets to identify viral sequences. In one study the viral genomes (‘viromes’) from the Arctic Ocean, the Sargasso Sea, and the coastal waters of British Columbia and the Gulf of Mexico were compared. Over 90% of the sequences were not found in the GenBank collection. There was also little sequence overlap among the samples from the four sites. Similar studies have revealed a rich array of RNA viruses in two different coastal environments; again, most of the sequences were not present in current databases. From the results of these studies it has been estimated that the oceans probably harbor several hundred thousand viral species.

Much more work is required to understand the diversity of marine viruses and their role in the global ecosystem. From the studies done to date, one conclusion is quite clear: the numbers of viruses in the oceans, and their impact on marine life, is far greater than we we ever imagined. And the zoonotic pool may be much larger than we suspected.

Suttle, C. (2007). Marine viruses — major players in the global ecosystem Nature Reviews Microbiology, 5 (10), 801-812 DOI: 10.1038/nrmicro1750

Angly, F., Felts, B., Breitbart, M., Salamon, P., Edwards, R., Carlson, C., Chan, A., Haynes, M., Kelley, S., Liu, H., Mahaffy, J., Mueller, J., Nulton, J., Olson, R., Parsons, R., Rayhawk, S., Suttle, C., & Rohwer, F. (2006). The Marine Viromes of Four Oceanic Regions PLoS Biology, 4 (11) DOI: 10.1371/journal.pbio.0040368

Culley, A., Lang, A.S., & Suttle, C.A. (2006). Metagenomic Analysis of Coastal RNA Virus Communities Science, 312 (5781), 1795-1798 DOI: 10.1126/science.1127404

Filed Under: Information Tagged With: bioinformatics, ecology, marine, metagenomics, ocean, sea, virology, virome, virus, zoonotic

  • « Go to Previous Page
  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Go to page 4

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.