• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

TSE

TWiV 950: Prion diseases with Richard Knight

29 October 2022 by Vincent Racaniello

From the European Society for Clinical Virology 2022 Conference in Manchester UK, Vincent speaks with Richard Knight about prion diseases and the outbreak of bovine spongiform encephalitis that led to cases of variant Creutzfeldt-Jakob disease in humans.

Host: Vincent Racaniello

Guest: Richard Knight

Click arrow to play
Download TWiV 950 (68 MB .mp3, 114 min)
Subscribe (free): Apple Podcasts, Google Podcasts, RSS, email

Become a patron of TWiV!

Show notes at microbe.tv/twiv

Filed Under: This Week in Virology Tagged With: bovine spongiform encephalopathy, CJD, mad cow disease, prion, scrapie, transmissible spongiform encephalopathy, TSE, variant Creutzfeldt-Jacob disease, vCJD

How prions make you sick

24 February 2017 by Vincent Racaniello

dendritic spineTransmissible spongiform encephalopathies (TSEs) are rare, but always fatal, neurodegenerative disorders of humans and other mammals. They are characterized by long incubation periods, spongiform changes in the brain associated with loss of neurons, and the absence of host responses. TSEs are caused by infectious proteins called prions. Insight into how prions cause TSEs comes from the observation that exposure of neurons to prions causes retraction of dendritic spines (link to paper).

Early alterations in the nervous system caused by prions include changes in the synapse such as retraction of dendritic spines, the projections where synaptic contacts occur (illustrated; image credit). Understanding these pathologies has been difficult due to a lack of an appropriate neuronal culture system.

To determine if prions are toxic for neurons, primary neuronal cultures were prepared from mice and grown on layers of astrocytes. Addition of an infected brain homogenate from mice that had been inoculated with the scrapie prion, PrPsc, led within 24 hours to retraction of dendritic spines and a reduction in their number and area. Similar effects on dendritic spines were also observed when purified PrPsc was used.

No effects of brain homogenates were observed using neurons prepared from mice lacking the prion gene prnp. This observation might have been predicted because prion diseases do not occur in mice lacking the prnp gene. However only an N-terminal domain of PrPc (amino acids 23-31) is required for the loss of dendritic spines. It seems likely that this part of PrPc on neurons binds the pathogenic PrPsc form, leading to neuronal loss.

Normal prions (PrPc) are completely digested with the enzyme proteinase K, while the pathogenic prion PrPsc is relatively resistant. Proteinase K treated PrPsc retained the ability to cause retraction of dendritic spines, showing that amino acids 23-90 of the protein are not needed for synaptotoxicity.

Dendritic spines are responsible for excitatory postsynaptic transmission and have roles in learning and memory. Their retraction by pathogenic prions are likely early changes leading to the pathogenic consequences of TSEs. How prions cause spine retractions can now be determined using cultured neurons. It will also be possible to determine if similar mechanisms are involved in dendritic spine loss associated with other neurodegenerative diseases, such as Alzheimer’s, Huntington’s, and Parkinson’s diseases.

 

Filed Under: Basic virology, Information Tagged With: alzheimer's disease, dendrite, dendritic spine, Huntington's disease, neuron, Parkinson's disease, prion, prion disease, PrPc, PrPsc, scrapie, synapse, TSE

Structure of an infectious prion

15 September 2016 by Vincent Racaniello

prion conversionPrions are not viruses – they are infectious proteins that lack nucleic acids. Nevertheless, virologists have always been fascinated by prions - they appear in virology textbooks (where else would you put them?) and are taught in virology classes. I’ve written about prions on this blog (five articles, to be exact – look under P in the Table of Contents) and I’m fascinated by their biology and transmission. That’s why the newly solved structure of an infectious prion protein is the topic of the sixth prion article at virology blog.

Spongiform encephalopathies are neurodegenerative diseases caused by misfolding of normal cellular prion proteins. Human spongiform encephalopathies are placed into three groups: infectious, familial or genetic, and sporadic, distinguished by how the disease is acquired initially. In all cases, the pathogenic protein is the host-encoded PrPC protein with an altered conformation, called PrPsc. In the simplest case, PrPSc converts normal PrPC protein into more copies of the pathogenic form (illustrated).

The structure of the normal PrPC protein, solved some time ago, revealed that it is largely alpha-helical with little beta-strand content. The structure of PrPSc protein has been elusive, because it forms aggregates and amyloid fibrils. It has been suggested that the PrPSc protein has more beta-strand content than the normal protein, but how this property would lead to prion replication was unknown. Clearly solving the structure of prion protein was needed to fully understand the biology of this unusual pathogen.

The structure of PrPSc protein has now been solved by cryo-electron microscopy and image reconstruction (link to paper). The protein was purified from transgenic mice programmed to produce a form of  PrPSc protein that is not anchored to the cell membrane, and which is also underglycosylated. The protein causes disease in mice but is more homogeneous and forms fibrillar plaques, allowing gentler purification methods.

prion structureThe structure of this form of the PrPSc protein reveals that it consists of two intertwined fibrils (red in the image) which most likely consist of a series of repeated beta-strands, or rungs, called a beta-solenoid. The structure provides clues about how a pathogenic prion protein converts a normal PrPC into PrPSc . The upper and lower rungs of beta-solenoids are likely the initiation points for hydrogen-bonding with new PrPC molecules – in many proteins with beta-solenoids, they are blocked to prevent propagation of beta-sheets. Once added to the fibrils, the ends would serve to recruit additional proteins, and the chain lengthens.

The authors note that the molecular interactions that control prion templating, including hydrogen-bonding, charge and hydrophobic interactions, aromatic stacking, and steric constraints, also play roles in DNA replication.

The structure of PrPSc protein provides a mechanism for prion replication by incorporation of additional molecules into a growing beta-solenoid. I wonder if incorporation into fibrils is the sole driving force for converting PrPCprotein into PrPSc, or if PrPC is conformationally altered before it ever encounters a growing fibril.

 

Filed Under: Information Tagged With: beta-solenoid, beta-strand, cryo-electron microscopy, cryo-EM, prion, protein structure, scrapie, transmissible spongiform encephalopathy, TSE, viral, virology, virus, viruses

Prion contamination in the emergency room

8 October 2015 by Vincent Racaniello

prion conversionHere is a follow-up to last week’s article that described a case of variant Creutzfeldt-Jacob disease in a Texas resident caused by ingestion of BSE-contaminated beef 14 years ago.

A 59 year old male patient was admitted to the trauma unit in Lancaster, PA with a self-inflicted gunshot wound to the head. There was substantial bleeding and brain tissue extrusion from the bullet exit wound. While the patient was intubated, examination of his electronic health records revealed a previous diagnosis of Creutzfeldt-Jacob disease (CJD). After discussion with his family, the breathing tube was removed and the patient expired.

After discovering that the patient had CJD, TSE (transmissible spongiform encephalopathy) decontamination protocols were initiated. Equipment and surfaces that had been exposed to highly infectious brain tissues were identified. Because prions are extremely difficult to destroy, it was decided to incinerate many pieces of equipment costing tens of thousands of dollars. This decision was taken to protect workers in the trauma unit and future hospital patients from hospital-acquired CJD.

The usual sterilization conditions (121 degrees Celsius for 20 minutes under high pressure) do not destroy prion protein infectivity. Consequently the World Health Organization recommends incineration of potentially contaminated materials. While environmental transmission of prion diseases has not been reported, WHO suggests rinsing surfaces with sodium hydroxide or sodium hypochlorite for 1 hour, followed by flooding with water, to remove prions.

This case illustrates the problems associated with an unusual infectious agent, the prion, that is difficult to inactivate. It also shows the value of electronic health records. Without such readily accessible information, the discovery that the patient had CJD would have been substantially delayed, leading to further contamination.

Creutzfeldt-Jacob associated deaths have increased slowly but steadily in the US since 1979. The number of cases will likely continue to increase until early diagnosis tests become routinely available, and drugs are developed that can cure the disease.

Filed Under: Basic virology, Information Tagged With: CJD, contamination, Creutzfeldt-Jacob disease, emergency room, prion, transmissible spongiform encephalopathy, trauma service, TSE, viral, virology, virus

A case of prion disease acquired from contaminated beef

1 October 2015 by Vincent Racaniello

prion conversionSpongiform encephalopathies are neurodegenerative diseases caused by misfolding of normal cellular prion proteins. A 2014 case of variant Creutzfeldt-Jacob prion disease in the United States was probably caused by eating beef from animals with bovine spongiform encephalopathy (BSE), or mad cow disease.

Human spongiform encephalopathies are placed into three groups: infectious, familial or genetic, and sporadic, distinguished by how the disease is acquired initially. In the mid 1980s, a prion disease called bovine spongiform encephalopathy appeared in cows in the United Kingdom. It is believed to have been transmitted to cows by feeding them meat and bone meal, a high protein supplement prepared from the offal of sheep, cattle, pigs, and chicken. Some of the animals prepared for feed likely had a prion disease. Cases of variant Creutzfeld-Jakob disease, a new spongiform encephalopathy of humans, began to appear in 1994 in Great Britain. They were characterized by a lower mean age of the patients (26 years), longer duration of illness, and differences in other clinical and pathological characteristics. Variant Creutzfeldt-Jakob disease (vCJD) is caused by prions transmitted by the consumption of cattle with bovine spongiform encephalopathy.

In late 2012 a male Texas resident began showing symptoms of depression and anxiety, followed by delusions, hallucinations, and other changes in behavior. Over the next 18 months the patient’s condition deteriorated, leading to inability to ambulate or speak, and after several episodes of aspiration pneumonia and sepsis the patient died. During the illness prion disease was suspected, but tests for this condition were negative. After death, examination of brain biopsies revealed typical prion plaques, and misfolded prion proteins were found in urine, confirming the diagnosis of variant Creutzfeldt-Jacob disease.

The source of the patient’s prion disease was likely consumption of contaminated beef from cows with bovine spongiform encephalopathy. The patient probably acquired the infection in Russia, Lebanon, or Kuwait, three countries that had received BSE-contaminated beef from the UK, and and where he had previously lived. He resided in the US for 14 years before developing symptoms, an incubation period consistent with models of the vCJD epidemic.

This Texas patient is the fourth worldwide since 2012 to be diagnosed with vCJD; the others were from the UK and France. There are likely to be additional cases of vCJD in the future: surveys of archived appendix tissues in the UK show that 1 in 2,000 persons born during 1941-1985 have asymptomatic vCJD infection. These individuals could transmit the misfolded prion proteins to others via transplantation, blood transfusion, or surgical instruments (prion infectivity is not destroyed by autoclaving).

The good news is that vCJD is rare: there have been 230 reported cases of vCJD worldwide caused by consumption of BSE beef. The bad news is that vCJD will probably continue to appear in humans for many years, not only from the aftermath of the BSE epidemic. Rare cows spontaneously develop BSE, and because cattle are slaughtered before disease symptoms are evident, contaminated meat could enter the food supply.

Filed Under: Basic virology, Information Tagged With: bovine spongiform encephalopathy, bse, mad cow disease, prion, transmissible spongiform encephalopathy, TSE, viral, virology, virus

Prions in plants

25 June 2015 by Vincent Racaniello

prions in plants

Chronic wasting disease is a prion disease of cervids (deer, elk, moose) that is potentially a threat to human health. A role for environmental prion contamination in transmission is supported by the finding that plants can take up prions from the soil and transmit them to animals.

A concern is that prions of chronic wasting disease could be transmitted to cows grazing in pastures contaminated by cervids. Consumption of infected cows would then pass the disease on to humans. When deer are fed prions they excrete them in the feces before developing clinical signs of infection, and prions can also be detected in deer saliva. In the laboratory, brain homogenates from infected deer can transmit the disease to cows.

To determine whether prions can enter plants, wheat grass roots and leaves were exposed to brain homogenates from hamsters that had died of prion disease. The plant materials were then washed and amounts of prions were determined by protein misfolding cyclic amplification. Prions readily bound these plant tissues, at low concentrations and after as little as 2 minutes of incubation. Mouse, cervid, and human prions also bound to plant roots and leaves. When living wheat grass leaves were sprayed with a 1% hamster brain homogenate, prions could attach to the leaves and be detected for 49 days.

To determine if prions in plants could infect animals, plants were exposed to brain homogenates, washed thoroughly, and then fed to hamsters. The positive control for this experiment was to feed hamsters the brain homogenates. All animals fed infected plants or brain homogenates succumbed to prion disease.

Plants can also take up prions from animal waste. This conclusion was reached by incubating leaves and roots for 1 hour with urine or feces obtained from prion-infected hamsters or cervids. Prions were readily detected in these samples, even after extensive washing.

Experiments were also done to examine whether plants could take up prions from the soil. Barley grass plants were grown on soil that had been mixed with hamster brain homogenate, and then 1-3 weeks later, stem and leaves were assayed for the presence of prions. Small amounts of prions were detected in stems from all plants, while 1 in 4 plants contained prions in leaves, at levels that should be able to infect an animal.

These results show that prions can bind to plants and be taken into the roots, where they may travel to the stem and leaves. Therefore it is possible that prions excreted by deer could pass on to other animals, such as grazing cows, or even humans consuming contaminated plants (illustrated – image credit). Cooking plants will not eliminate infectivity, just as cooking contaminated beef did not halt the spread of bovine spongiform encephalopathy. Keeping cervids out of grazing or growing fields should be considered as a way to manage the risk of prions entering the human food chain.

Filed Under: Basic virology, Information Tagged With: cervid, chronic wasting disease, deer, mad cow disease, plant, prion, protein misfolding cyclic amplification, transmissible spongiform encephalopathy, TSE, viral, virology, virus

  • Go to page 1
  • Go to page 2
  • Go to Next Page »

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.