• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

TRIM

Antibodies neutralize viral infectivity inside cells

11 November 2010 by Vincent Racaniello

Antibodies are an important component of the host defense against viral infection. These molecules, produced 7-14 days after infection, neutralize viral infectivity, thereby limiting the spread of infection. Antibodies are thought to neutralize viral infectivity in several ways: by forming noninfectious aggregates that cannot enter cells, or by blocking virion attachment to cells or uncoating (figure). A new mechanism has just joined this list, in which antibody bound virions are degraded in the cell cytoplasm.

A cytoplasmic protein called TRIM21 (tripartite motif-containing 21) was recently found to bind with high affinity to the conserved regions of antibody molecules. The presence of this activity in many mammalian species suggested that there could be ways that antibodies operate within cells. This possibility was studied by using adenovirus infection of cultured cells. When adenovirions were mixed with neutralizing antibodies and added to cells, the antibody-coated particles entered the cytoplasm where they became associated with TRIM21. This behavior was observed when several different adenovirus antibodies were used, suggesting that it is not an unusual property of one type of antibody.

By definition, neutralizing antibodies reduce viral infectivity. When levels of cellular TRIM21 protein were depleted, neutralizing antibodies had little effect on adenovirus infectivity. This effect was found in several cell lines, using three different anti-adenovirus antibodies, and requires the antibody Fc domain. These observations show that adenovirus neutralization by antibodies occurs in the cell cytoplasm, and is dependent upon the binding of antibodies to TRIM21 protein.

How does the interaction of TRIM21 with antibodies bound to adenovirus neutralize viral infectivity? TRIM21 is known to target proteins for degradation by linking them to a small protein called ubiquitin, which labels them for elimination. Cells have two different pathways for degrading ubiquitinated proteins: autophagy and the proteasome. Neutralization of antibody-coated adenovirus was not affected by an inhibitor of autophagy, but was blocked by a proteasome inhibitor. Consistent with this observation, antibody-coated adenovirions in the cell cytoplasm contained both TRIM21 and ubiquitin. Such virions are rapidly degraded, destroying their infectivity.

When antibodies were introduced in uninfected cells, they still associated with TRIM21 protein. This observation means that a virus particle is not needed for the interaction of TRIM21 with antibody. The importance of this finding is that it is possible that other viruses are neutralized by a TRIM21-dependent mechanism. Answering this question could have practical value, because stimulation of TRIM21 immunity might be an important property of effective vaccines.

TRIM21 is an example of a protein that bridges the innate and adaptive immune responses. It is induced by interferons, which are produced early in infection as foreign molecules are detected by the innate immune system. Furthermore, TRIM21 assists in viral neutralization by binding to antibodies, which are products of the adaptive immune response. As would be expected, antibody neutralization of adenovirus is more efficient when cells are treated with interferon.

The participation of cytoplasmic TRIM21 in antibody-mediated virus neutralization might explain a variety of previously unexplained observations. These include:

  • There is a linear-log relationship between antibody dilution and neutralization of adenovirus, and longer incubation does not result in more neutralization
  • Antibody neutralization of poliovirus is observed even when antibodies are added after attachment of virions to cells
  • A single IgG antibody molecule is enough to neutralize poliovirus and adenovirus infectivity
  • 5-6 IgG molecules are enough to neutralize rhinovirus
  • Intact antibody molecules are more effective at neutralizing viruses than those which have been cleaved to produce Fab and Fc fragments

It has always been difficult to understand how just a few antibody molecules can neutralize viral infectivity. The TRIM21 dependent mechanism provides the first plausible mechanism.

An important issue that is not addressed by these studies is the relationship between viral entry and TRIM21 mediated neutralization. Adenovirus is taken into the cell by endocytosis, and then released into the cytoplasm as a partially disassembled particle which docks onto the nuclear pore complex, leading to entry of DNA into the nucleus. Does TRIM21 accompany the virion throughout the endocytic process, targeting the capsid to the proteasome after it is released from the endosome? If TRIM21 were shown to be involved in neutralization of poliovirus, it would not be consistent with the observation that poliovirions do not exit endosomes – the viral RNA is simply translocated across the endosome membrane.

TRIM21-dependent antibody neutralization of viruses is a fascinating new mechanism that could apply to a wide range of viruses. But a number of questions must be answered before it enters the virology textbooks.

Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, & James LC (2010). Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proceedings of the National Academy of Sciences of the United States of America PMID: 21045130

Filed Under: Basic virology, Information Tagged With: antibody, immune defense, immunity, immunology, neutralization, proteasome, TRIM, ubiquitin, viral, virology, virus

How influenza virus inhibits early antiviral responses

4 June 2009 by Vincent Racaniello

PrintThe fact that viruses routinely and frequently cause disease shows that our defense mechanisms are imperfect. This occurs in large part because nearly every viral genome encodes one or more countermeasures to modulate host defenses. Influenza virus is no exception. One of the viral proteins, called NS1, is particularly adept at impairing the synthesis of interferons (IFN) by cells.

The influenza NS1 protein, which is encoded by viral RNA 8, inhibits the innate and adaptive immune responses by multiple mechanisms. The protein blocks expression of type I IFN and inflammatory cytokines, and interferes with T-cell activation. Viral mutants with a truncated NS1 protein cause less severe disease in mice, pigs, horses, and macaques. Such viral mutants induce higher levels of IFN synthesis, and better T-cell activation, than wild type virus. It has been suggested that viruses with truncated NS1 proteins might be good candidates for infectious, attenuated vaccines against influenza.

The main sensor of influenza virus infection is the cytoplasmic protein known as RIG-I (illustrated). This protein resides in the cytoplasm and senses the presence of viral RNA – either double-stranded RNA (dsRNA) or single-stranded RNA (ssRNA) with a 5′-phosphate. When these RNAs bind RIG-I, a signaling cascade is initiated which culminates in the production of IFN. The IFNs in turn activate the synthesis of nearly a thousand cellular proteins which have antiviral properties.

In order to function in the pathway leading to IFN induction, RIG-I must be ubiquinated near its amino terminus, on what is known as the CARD domain. Attachment of ubiquitin to RIG-I is accomplished by a cellular enzyme called TRIM25. In cells infected with influenza virus, RIG-I is not ubiquinated, and therefore IFN is not produced. The NS1 protein of influenza virus specifically inhibits ubiqutination of RIG-I by TRIM25. It does so by binding to TRIM25 and preventing it from forming multimers. A specific amino acid sequence in NS1, threonine-leucine-glutamic acid-glutamic acid, is involved in binding to TRIM25. A virus in which the two glutamic acid residues are converted to alanine is defective in blocking TRIM25-mediated ubiquitination of RIG-I. Consequently, in cells infected with this mutant virus, IFN is produced and viral replication in suppressed. As expected, the virus is much less virulent in mice than wild type virus.

Other TRIM proteins (the name stands for TRIpartite Motif, a reference to the fact that the proteins have RING, B-box zinc finger, and coiled-coil domains) are also involved in antiviral defense. TRIM19 inhibits the replication of many DNA and RNA viruses, while TRIM5α blocks replication of HIV. TRIM25 is the first protein of this family whose function has been shown to be inhibited by a viral protein, influenza virus NS1. Given the effectiveness of the innate immune response, it is safe to say that viruses exist only because they encode antagonists of this defense system. It seems likely that viral modulators of TRIM19 and TRIM5α await discovery.

Haye, K., Bourmakina, S., Moran, T., Garcia-Sastre, A., & Fernandez-Sesma, A. (2009). The NS1 protein of a human influenza virus inhibits type I interferon production and the induction of antiviral responses in primary human dendritic and respiratory epithelial cells Journal of Virology DOI: 10.1128/JVI.02323-08

Gack, M., Albrecht, R., Urano, T., Inn, K., Huang, I., Carnero, E., Farzan, M., Inoue, S., Jung, J., & García-Sastre, A. (2009). Influenza A Virus NS1 Targets the Ubiquitin Ligase TRIM25 to Evade Recognition by the Host Viral RNA Sensor RIG-I Cell Host & Microbe, 5 (5), 439-449 DOI: 10.1016/j.chom.2009.04.006

Filed Under: Information Tagged With: H1N1, IFN, influenza, innate immunity, interferon, RIG-I, swine flu, TRIM, ubiquitin, viral, virology, virus

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.