• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

RNA dependent RNA polymerase

TWiV 464: Boston baked viruses

22 October 2017 by Vincent Racaniello

At Tufts University Dental School in Boston, Vincent speaks with Katya Heldwein and Sean Whelan about their careers and their work on herpesvirus structure and replication of vesicular stomatitis virus.

Click arrow to play
Download TWiV 464 (53 MB .mp3, 88 min)
Subscribe (free): iTunes, RSS, email

Become a patron of TWiV!

Show notes at microbe.tv/twiv

Filed Under: This Week in Virology Tagged With: glycoprotein, herpes simplex virus, infectious DNA clone, negative strand virus, RNA dependent RNA polymerase, tegument, vesicular stomatitis virus, viral, virology, virus, virus egress, virus entry, viruses, X-ray structure

TWiV 450: Ben tenOever and RNA out

16 July 2017 by Vincent Racaniello

Ben tenOever joins the TWiVoli to discuss the evolution of RNA interference and his lab’s finding that RNAse III nucleases, needed for the maturation of cellular RNAs, are an ancient antiviral RNA recognition platform in all domains of life.

 

Click arrow to play
Download TWiV 450 (58 MB .mp3, 96 min)
Subscribe (free): iTunes, RSS, email

Become a patron of TWiV!

Show notes at microbe.tv/twiv

Filed Under: This Week in Virology Tagged With: Ago, antiviral defense, dicer, drosha, evolution, IFN, interferon, miRNA, RNA dependent RNA polymerase, RNA interference, rnai, RNAse III, viral, virology, virus, viruses

TWiV 330: A swinging gate

29 March 2015 by Vincent Racaniello

On episode #330 of the science show This Week in Virology, the TWiVers explain how a protein platform assists the hepatitis C virus RNA polymerase to begin the task of making viral genomes.

You can find TWiV #330 at www.microbe.tv/twiv.

Filed Under: This Week in Virology Tagged With: cfs/me, cytokines, de novo initiation, hepatitis C virus, primer dependent, primer independent, protein priming platform, RNA dependent RNA polymerase, RNA polymerase, viral, virology, virus, X-ray structure

A protein platform for priming

26 March 2015 by Vincent Racaniello

Priming RNA synthesisThe enzymes that make copies of the DNA or RNA genomes of viruses – nucleic acid polymerases – can be placed into two broad categories depending on whether or not they require a primer, a short piece of DNA or RNA, to get going. The structure of the primer-independent RNA polymerase of hepatitis C virus reveals how a priming platform is built into the enzyme.

The requirement for a primer in the initiation step of nucleic acid synthesis varies among the different classes of polymerases. All DNA polymerases are primer-dependent enzymes, while DNA-dependent RNA polymerases initiate RNA synthesis de novo – without a primer. Some RNA-dependent RNA polymerases can also initiate RNA synthesis without a primer: the enzyme begins by adding the first base complementary to the template RNA (illustrated). Other RNA-dependent RNA polymerases require a primer to initiate synthesis. Examples shown on the illustration include the protein-linked primer of picornaviruses, which consists of the protein VPg covalently attached to two U residues. The primer for influenza virus mRNA synthesis is a capped oligonucleotide 12-14 bases in length that is cleaved from the 5′ end of cellular mRNA.

The structure of the RNA-dependent RNA polymerase of hepatitis C virus reveals how a primer-independent RNA polymerase positions the first nucleotide on the RNA template. This process is illustrated below. With the RNA template (dark green) in the active site of the enzyme (panel A), a short beta-loop (brown) provides a platform on which the first complementary nucleotide (light green) is added to the template. The second nucleotide is then added (panel B), producing a dinucleotide primer for RNA synthesis. At this point nothing further can happen because  the priming platform blocks the exit of the RNA product from the enzyme (panel B). The solution to this problem is that the polymerase undergoes a conformational change that moves the priming platform out of the way and allows the newly synthesized complementary RNA (panel C, light green) to exit as the enzyme moves along the template strand.

 HCV priming of RNA synthesis

The structure of the RNA polymerase of hepatitis C virus reveals that it is not really a primer-independent enzyme: a dinucleotide primer is synthesized by the polymerase using a protein platform in the active site. Such protein platforms also appear to be involved in the priming of RNA synthesis by other flaviviruses (dengue and West Nile viruses), influenza virus (genome RNA synthesis is primer independent), reovirus, and bacteriophage phi6. Perhaps all viral RNA-dependent RNA polymerases are dependent on such priming platforms to initiate RNA synthesis.

Filed Under: Basic virology, Information Tagged With: crystal structure, hepatitis a virus, priming, RNA dependent RNA polymerase, rna synthesis, viral, virology, virus

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.