• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

retrovirus

An Appreciation for Viruses

7 October 2021 by Gertrud U. Rey

by Gertrud U. Rey

EV-D68

Most people associate viruses with illness and suffering. After all, the word “virus” is derived from the Latin word for “poison.” However, considering that the vast majority of viruses cause no illness and are actually beneficial to humans and the planet as a whole, this sentiment is largely misplaced. Let me explain.

The ability of viruses to enter cells by attaching to host cell receptors and releasing their genome into the cell can be exploited for various purposes. For example, viruses can be used as vectors for delivering vaccines, healthy copies of defective genes (i.e., for “gene therapy”), and therapeutic drugs to specific cells.

Several SARS-CoV-2 vaccines, including those made by AstraZeneca and Johnson & Johnson, consist of a “vector virus” (an adenovirus) that contains a gene for the SARS-CoV-2 spike protein. Upon injection into a vaccine recipient, the vector virus should enter cells and serve as a code for host proteins to synthesize the encoded spike protein. Genes that regulate replication of the vector virus are removed to ensure that the vector itself cannot cause an infection in human cells. Other genes not needed for purposes of vaccine delivery are also typically removed to create more room inside the vector for the inserted antigen gene. Adenoviruses are particularly suitable for delivering foreign genes into cells because they have a double-stranded DNA genome that can accommodate segments of foreign DNA and because they infect most cell types without integrating into the host genome. However, poxviruses, retroviruses, vesicular stomatitis virus, and other viruses can also be used for vaccine delivery. As of today, six viral-vectored vaccines have been authorized for use in humans: four SARS-CoV-2 vaccines (two of which were previously described here and here) and two Ebola virus vaccines.

Viruses may also serve as vectors for targeted gene therapy to treat genetic disorders caused by mutations in the sequence of a person’s DNA. By replacing the mutated, non-functional portion of DNA with its healthy counterpart, the function of the defective gene could potentially be restored. Some viruses, like retroviruses, already insert their genetic material into the host genome as part of their replication cycle, making them suitable for delivering such functional genes to target cells. Recent advances in technology may even allow for the delivery of CRISPR-mediated gene editing tools to edit the target genome in the cell by excising the defective gene and replacing it with a functional version. One such targeted therapy aimed at treating genetic muscle disease by specifically targeting muscle cells was recently discussed on TWiV 812. Another exemplary gene therapy method for potentially deleting integrated HIV-1 from the genomes of infected individuals using CRISPR technology was described in a previous post.

A similar vector approach can also be used for cell-specific delivery of therapeutic drugs. For example, replication-incompetent viruses (viruses that have been engineered so they can’t replicate) can be further modified. These modifications may allow the viruses to specifically target dividing tumor cells or cells that display surface proteins that are unique to cancer cells, and deliver chemotherapeutic drugs only to those cells. Alternatively, replication-competent viruses can be manipulated to directly target and kill cancer cells in a mechanism known as oncolytic virotherapy. An example of this mechanism described previously involves a herpes simplex virus engineered to target a receptor that is practically absent in healthy brain cells, but is specifically expressed on glioblastoma multiforme tumor cells. The engineered virus also encodes a gene for a cytokine that increases the effectiveness of oncolytic viruses by recruiting cytotoxic T lymphocytes, which cause the tumor cells to burst. An accumulating body of evidence suggests that the cancer-specific antigens that emerge from burst cancer cells may also trigger additional downstream immune responses, further enhancing the potency of oncolytic viruses.

Considering that we are on the brink of a major antibiotic resistance crisis, viruses may just come to our rescue in this regard as well. Bacteriophages (“phages” for short) are viruses that only infect bacteria, and as it turns out, they can be used to treat pathogenic bacterial infections. There are numerous potential advantages to phage therapy compared to traditional antibiotic therapy. Phages are equally effective against antibiotic-sensitive and antibiotic-resistant bacteria. They are also more specific than antibiotics, and this specificity leads to reduced impact on commensal bacteria, which are typically obliterated by conventional antibiotics. Unlike most antibiotics, phages are capable of disrupting bacterial biofilms, and their use would lead to reduced incidence of opportunistic infections and reduced toxic effects of bacterial infection. Although bacteria can become resistant to phages, phages can likewise evolve to overcome this resistance, making bacterial resistance to phages less of a challenge than their resistance to antibiotics. Furthermore, scientists have found that the efficacy of phage therapy can be improved by combining phages with an antibiotic treatment regimen, or by combining several phages in a “phage cocktail.” In a highly publicized phage therapy success story, infectious disease epidemiologist Steffanie Strathdee describes how she recruited the help of an international team of physicians to cure her husband of a life-threatening multi-drug-resistant Acinetobacter baumanii infection using an intravenous phage therapy cocktail.

Phages can also be used as an alternative energy source by powering the electrodes in batteries. As repeatedly demonstrated by materials scientist Angela Belcher at MIT, biological scaffolds composed of M13 phages that display the negatively charged peptide sequence glutamate-glutamate-alanine-glutamate (E-E-A-E) inevitably attract nickel phosphide molecules, and the resulting nanostructures can be used directly as freestanding negative electrodes in batteries. These “virus batteries” have multiple advantages over traditional batteries. They are more environmentally friendly because they’re made from non-toxic materials. Their synthesis requires relatively little equipment, so they are inexpensive to produce. They are lightweight and flexible and can thus be woven into fabrics, which makes them suitable for military clothing. They also have higher conductivity than conventional lithium-ion batteries, making them extremely useful for portable electronics, medical implants, and various aerospace applications. It is even possible that they could one day be used to power electric cars.

The examples described so far are ones in which people have capitalized on virus functions for the benefit of humans. However, viruses have other benefits that just relate to their natural functions. For instance, phages are also an essential component of our environment, where they help control pests and recycle nutrients. If phages didn’t exist, some bacterial populations would explode and outcompete other populations, causing them to disappear completely. This imbalance would be especially disastrous in the oceans, where microbes make up more than 70% of the total biomass. Phages kill a large portion of oceanic bacteria every day, allowing the organic molecules released from the dead bacterial cells to be recycled as nutrients for other organisms. Perhaps the most important organisms to benefit from these recycled nutrients are microscopic plants called phytoplankton, which produce oxygen by removing carbon dioxide from the atmosphere. In fact, phytoplankton are a crucial element of the global carbon cycle and one of the largest contributors to our atmospheric oxygen. This means that without viruses, we would not have air to breathe.

Viruses are deeply integrated in life on earth, and their functions in sustaining environmental equilibrium and our ongoing survival are too numerous to describe in a single blog post. Moreover, our current appreciation of what can be accomplished using viruses is cursory, at best. Future research will lead to a deeper understanding of how viruses can be utilized to do more good.

[This post was written in honor of Virus Appreciation Day, which occurs annually on October 3]

Filed Under: Basic virology, Gertrud Rey Tagged With: adenovirus-vectored vaccine, bacteriophage, crispr, gene editing, gene therapy, microbe, oncolytic vector, oncolytic virotherapy, phage, phage therapy, phytoplankton, retrovirus, vaccines, vector, viral oncotherapy, virus battery, virus vector

A whale of a virus story

15 July 2021 by Vincent Racaniello

The ancestors of cetaceans (whales, dolphins, and porpoises) moved from land to the sea over 50 million years ago. Many viruses infect cetaceans, but how they evolved during the shift from land to sea is unknown. Fossilized retroviral genomes integrated into cetacean DNA provide insight into this question.

The retroviral reproduction cycle involves the conversion of viral RNA into DNA followed by integration in host chromosomes, leading to what is know as proviral DNA. If this integration event occurs in germ cells, the provirus may be transmitted to offspring for many generations. Analysis of cetacean endogenous retroviral DNA (ERV) provides insight into when in evolution these viruses were acquired.

Cetacean retroviruses may have arisen in two ways. In the land-to-water scenario (pictured), the terrestrial ancestor of cetaceans was infected, and then carried the retrovirus into the oceans. In the secondary host switching scenario, only after cetaceans were in the oceans were they infected by cross-species transmission from other non-cetacean mammals.

Analysis of cetacean ERVs provides support for both scenarios. A search of the sequenced genomes of mysticetes (baleen whales) and odontocetes (toothed whales) revealed 8,724 ERVs. Phylogenetic analysis of these ERVs places them into 315 distinct lineages. Of these, 298 are found in both mysticetes and odontocetes, implying that they were present before these lineages diverged. The copy numbers of these ERVs are very low, suggesting that they did not proliferate after their hosts entered the waters. Some are related to ERVs found in hippopotamuses, which share a common ancestor with cetaceans, and are even found the the same location in the genomes.

Another 17 lineages were not common to mysticetes and odontocetes, but are found in specific sub-lineages of cetaceans. This observation suggests that they were acquired from other non-cetacean mammals. In support of this hypothesis, it was found that these ERVs are closely to ERVs in a variety of land mammals including bats and cows. These ERVs are more numerous in the cetacean genome, implying that they entered recently and might still be infecting these mammals. Whether or not the infections have pathogenic consequences is unknown.

The reader might be asking how a whale might acquire a virus from terrestrial and semi-aquatic mammals. Apparently there is more interaction of cetaceans with these animals than we think: killer whales have been observed feeding on terrestrial mammals and seals.

Given the difficulty in sampling cetaceans, it will be difficult to determine how other viruses originated in these animals. This question can be readily addressed for endogenous retroviruses because they are integrated into germline DNA, often for millions of years.

Filed Under: Basic virology, Information Tagged With: cetacean, endogenous retrovirus, ERV, phylogenetic analysis, retrovirus, viral, virology, virus, viruses

TWiV 649: Ohio State viral

4 August 2020 by Vincent Racaniello

Vincent visits Ohio State University (March 2020) and speaks with Shan-Lu, David, Amanda, Mark, Matt, Chris, and Qiuhong about their careers and their work on retroviruses, hepatitis C virus, coronaviruses, paramyxoviruses, and environmental viruses.

Click arrow to play
Download TWiV 650 (63 MB .mp3, 105 min)
Subscribe (free): iTunes, Google Podcasts, RSS, email

Become a patron of TWiV!

Show notes at microbe.tv/twiv

Filed Under: This Week in Virology Tagged With: coronavirus, COVID-19, hepatitis C virus, HTLV, pandemic, plant viruses, retrovirus, SARS-CoV-2, viral, viroids, virology, virus, viruses

Viruses That Jump Around

7 November 2019 by Gertrud U. Rey

Koala_climbing_treeby Gertrud U. Rey

Australian koalas are currently being invaded by koala retrovirus A (KoRV-A), a virus that causes an AIDS-like immunodeficiency and makes infected koalas more susceptible to cancers and opportunistic infections such as chlamydia.

[Read more…] about Viruses That Jump Around

Filed Under: Basic virology, Gertrud Rey, Information Tagged With: genome integration, koala retrovirus, KOR-A, piRNA, piwi protein, retrotransposon, retrovirus, rna silencing, unspliced RNA, viral, virology, virus, viruses

Retroviruses and the placenta, a remarkable relationship

21 June 2019 by Vincent Racaniello

Retroviruses have been infecting vertebrates for over 450 million years. Because retroviral DNA integrates into host cell DNA, the vertebrate genome is littered with remnants of these infections. Some of this retroviral DNA has been co-opted by the cell for a variety of beneficial purposes, such as development of the placenta and the control of birth timing.

[Read more…] about Retroviruses and the placenta, a remarkable relationship

Filed Under: Basic virology, Information Tagged With: corticotropin-releasing hormone, endogenous retrovirus, ERV, placenta, retrovirus, syncytiotrophoblast, viral, virology, virus, viruses

TWiV 551: Golden hands

9 June 2019 by Vincent Racaniello

At Retroviruses 2019 in Cold Spring Harbor, Vincent speaks with virologist Bryan Cullen about his work and his career, together with former associates Ann Skalka, Paul Bieniasz, and Michael Malim.

Click arrow to play
Download TWiV 551 (37 MB .mp3, 60 min)
Subscribe (free): iTunes, Google Podcasts, RSS, email

Become a patron of TWiV!

Filed Under: This Week in Virology Tagged With: AIDS, cold spring harbor laboratory, HIV-1, retrovirus, viral, virology, virus, viruses

  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Interim pages omitted …
  • Go to page 15
  • Go to Next Page »

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.