• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

research

The Zika Effect

26 May 2016 by Vincent Racaniello

Zika virusHaving worked on viruses for over 40 years, I know a fair number of people in the field, and I am amazed at how many of them have started to work on Zika virus. What exactly is attracting virologists to this emerging virus?

There are probably many reasons why Zika virus would be of interest to a research lab – what I call the Zika Effect - but here are what I think are the three main factors.

First, Zika virus has become medically important in the past year, as it has spread globally and is infecting many people each day. There are many unanswered questions about the virus, and for a scientist, there is nothing better than unanswered questions (except maybe getting money to answer the questions – see below). Because the virus is causing human disease, these questions have an immediacy – such as, does the virus cause birth defects; does the virus cross the placenta, and if so, how; how does the virus enter the central nervous system and cause disease, to name just a few. Because of the nature of Zika virus infection, the virus has attracted not only virologists, but neurobiologists, cell biologists, developmental biologists, and structural biologists. In short: scientists love answering questions, and when it comes to Zika virus, they are not in short supply.

Second, Zika virus is not dangerous to work with – a biosafety level 2 laboratory (BSL-2) is all that is needed. Most virologists carry out their work under BSL-2 containment, so if you are working on influenza virus, poliovirus, herpesvirus, and a host of other viruses, you are ready to work with Zika virus. This situation is in contrast to that which took place in 2015 with the ebolavirus outbreak in west Africa. Work on ebolavirus must be conducted under BSL-4 containment – which few virologists have access to (for a look inside a BSL-4 laboratory, check out the documentary Threading the NEIDL). Consequently far fewer laboratories began work on ebolaviruses after that outbreak.

The third reason for the Zika effect is the reward: the promise of a publication in a high profile scientific journal, a promotion, a new job, and new grant funding for the laboratory. Not the purest motivation, but a reality: in the United States, government funding of scientific research has been flat for so many years that any new opportunity is seized. Many laboratories are on the brink of extinction and reach out to any funding opportunity. Few will admit that funding or publication drives their interest in Zika virus, but there is no doubt that it is a major factor. If research money were plentiful, and if luxury journals were not so tightly linked to career success, there would likely be fewer entrants in the Zika race. And a race it is – at least in these early days, when low-hanging fruit is ripe for picking, papers roll out on a weekly basis and it is difficult to compete without a large research group.

The fact that so many laboratories are working on Zika virus is not only impressive but encouraging: it means that the scientific establishment is flexible and nimble. There is no doubt that the more minds engaged on a problem, the greater the chance that important questions will be answered. But working on Zika virus is not for the faint of heart – which I document on a weekly basis in Zika Diaries, a personal account of our foray into this seductive virus.

Filed Under: Basic virology, Information Tagged With: funding, grant, laboratory, publication, research, viral, virology, virus, viruses, Zika Diaries, zika virus

TWiV 335: Ebola lite

3 May 2015 by Vincent Racaniello

On episode #335 of the science show This Week in Virology, the TWiVumvirate discusses a whole Ebolavirus vaccine that protects primates, the finding that Ebolavirus is not undergoing rapid evolution, and a proposal to increase the pool of life science researchers by cutting money and time from grants.

You can find TWiV #335 at www.microbe.tv/twiv.

Filed Under: This Week in Virology Tagged With: aerosol, airborne, ebolavirus, evolution, funding, going aerosol, grants, mutation, NIH, Osterholm, research, transmission, vaccine, viral, virology, virus, VP30

TWiV 300: So happy together

31 August 2014 by Vincent Racaniello

Recording together for the first time, the hosts of the science show This Week in Virology celebrate their 300th recording at the American Society for Microbiology headquarters in Washington, DC, where Vincent  speaks with Dickson, Alan, Rich, and Kathy about their careers in science.

You can find TWiV #300 at www.microbe.tv/twiv.

Filed Under: This Week in Virology Tagged With: Alan Dove, dickson despommier, ebola virus, Kathy Spindler, podcast, research, Rich Condit, science career, This Week in Virology, TWiV, viral, virology, virus

TWiV 213: Not bad for a hobby

30 December 2012 by Vincent Racaniello

On the final episode of the year of the science show This Week in Virology, the TWiV team reviews twelve cool virology stories from 2012.

You can find TWiV #213 at www.microbe.tv/twiv.

Filed Under: This Week in Virology Tagged With: accordion, avian influenza, CFS, ebolavirus, epidemiology, H5N1, hepatitis b virus, herpesvirus, measles, NEIDL, placenta, polio, poliovirus, polydnavirus, poxvirus, prostate cancer, research, viral, virology, virus, virus hunters, wasp, xmrv, yearly review

Thirty years in my laboratory at Columbia University

21 September 2012 by Vincent Racaniello

Racaniello labThirty years ago this month I arrived in the Department of Microbiology at Columbia University’s College of Physicians and Surgeons (P&S) to start my own laboratory. Thirty is not only a multiple of ten (which we tend to celebrate), but also a long time to be at one place. It’s clearly time to reminisce!

After studying influenza viruses with Peter Palese in New York City, in 1979 I headed to David Baltimore‘s laboratory at MIT. It was not long after Baltimore had received the Nobel Prize in Physiology or Medicine for discovering retroviral reverse transcriptase. In his laboratory I first encountered poliovirus, which would hold my interest for many years to come. The moratorium on recombinant DNA research had just been lifted, and it was now possible to clone complete viral DNA genomes. My first project was to make a DNA copy of poliovirus RNA, clone it into a bacterial plasmid, and determine its sequence. The result gave us the first glimpse of the viral genome. I then found that a DNA copy of poliovirus RNA is infectious in mammalian cells, a story that I have documented elsewhere.

The next step in my career was to have my own laboratory. With these two papers in hand I was able to obtain several respectable job offers, including one in the Microbiology Department at P&S. The department chair was Harold S. Ginsberg, an adenovirologist. My decision to accept his offer was influenced by the strong virology component of the department, which included Saul Silverstein and Hamish Young. I moved back to New York City in September 1982 with a DNA copy of the poliovirus genome in hand. In the last few weeks in the Baltimore laboratory, I had cloned a DNA copy of another poliovirus strain – type 2 Lansing – which had the interesting ability to infect mice. I spent the first few years in my new laboratory studying this virus and how it caused paralysis in mice. We found that the type 2 Lansing viral capsid was important for the ability to infect mice. Later, we narrowed this down to 8 amino acids. The type 1 Mahoney strain of poliovirus – which I had studied in the Baltimore laboratory – cannot infect mice. However, if we substituted 8 amino acids of the Mahoney capsid with the corresponding sequence from the Lansing genome, the recombinant virus could infect mice.

Our sequence analysis of poliovirus RNA had revealed an unusually long 5′-noncoding region. We began to carry out experiments to understand how such a viral RNA could be translated, and found that this long sequence enabled translation in the absence of a cap protein. This observation lead to the discovery by others that the poliovirus 5′-noncoding region contains an internal ribosome entry site (IRES). In the ensuing years our interest in translation continued. Examples include our finding that cell proteins bind to the poliovirus 5′-noncoding region, now known to participate in regulation of translation and genome replication, and understanding the inhibition of cell translation by poliovirus. Years later we developed a functional assay for the IRES in yeast, allowing identification of cell proteins needed for internal ribosome binding.

There is one area of research that has received the most attention in my laboratory, and on which we have published most extensively: the interaction of viruses with cell receptors. Towards the end of my stay in the Baltimore laboratory I became interested in how poliovirus attaches to and enters cells.  I came to Columbia with a strong interest in identifying the cell receptor for poliovirus, which we subsequently achieved. This finding lead to a series of studies on virus attachment to cells and virus entry. We produced transgenic mice susceptible to poliovirus, and used them to study aspects of poliovirus replication and pathogenesis, including how the virus attaches to its cellular receptor, regulation of viral tissue tropism, and the basis for attenuation of the Sabin vaccine strains.

The finding that poliovirus tropism is regulated by the interferon response lead to a change in the direction of our research. Beginning in the early 2000s we began studying how poliovirus interacted with the innate immune response. We found that poliovirus is relatively resistant to the antiviral effects of interferon, a property conferred by the viral 2Apro proteinase. How poliovirus is sensed by the innate immune system has also become a focus of our work. With the looming prospect of poliovirus eradication, and subsequent prohibition of work on the virus, we have also turned our attention to rhinoviruses, agents of respiratory illness. One focus has been to establish a mouse model for rhinovirus infection.

This story would not be complete without mentioning my foray into science communication. I have written a virology textbook and a blog about viruses, and began three science podcasts, including This Week in Virology, This Week in Parasitism, and This Week in Microbiology. My use of social media to teach microbiology to the world has been documented in a Social Media and Microbiology Education and in my Peter Wildy Prize Address.

None of this work would have been possible without the participation of 24 Ph.D. students (Nicola La Monica, Cathy Mendelsohn, Eric Moss, Robert O’Neill, Mary Morrison, Ruibao Ren, Elizabeth Colston, Michael Bouchard, Suhua Zhang, Alan Dove, Sa Liao, Yanzhang Dong, Yi Lin, Brian McDermott, Melissa Stewart Kim, Steven Kauder, Julie Harris, Amy Rosenfeld, Juliet Morrison, Angela Rasmussen, Jennifer Drahos, and Esther Francisco), 7 postdoctoral fellows (Gerardo Kaplan, Marion Freistadt, Michael Shepley, Ornella Flore, Juan Salas-Benito, and Scott Hughes), and many technicians and undergraduate students. My laboratory currently consists of postdoctoral scientist Rea Dabelic, and graduate students Ashlee Bennett and Michael Schreiber (pictured above).

Counting my time here, together with my Ph.D. and postdoctoral years, I’ve been working on viruses for 37 years. I do not know how much longer I will be doing the same, but it’s safe to say that it won’t be for another 37 years. But whenever I stop directing virology research, I will continue to write, podcast, and teach – you can expect nothing less from Earth’s virology professor.

Filed Under: Basic virology, Information Tagged With: columbia university, interferon, laboratory, phd, poliovirus, postdoctoral, research, rhinovirus, viral, virology, virus

Microbiology education and social media

1 April 2010 by Vincent Racaniello

At the Spring 2010 meeting of the Society for General Microbiology In Edinburgh I spoke about ‘Social Media in Microbiology Education and Research’. In my presentation I reviewed how I use blogging, podcasting, and other social media tools to teach the public about viruses.

Below is a video recording of my presentation. Many thanks to Prof. AJ Cann for the opportunity to speak about our efforts. I also enjoyed excellent presentations by Prof. Graham Hatfull, Cameron Neylon, Kevin Emamy of citeulike, and Jason Hoyt of Mendeley.

Filed Under: Events, Information Tagged With: edinburgh, education, microbiology, research, sgm, social media, society for general microbiology, viral, virology, virus

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.