• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

priming

A protein platform for priming

26 March 2015 by Vincent Racaniello

Priming RNA synthesisThe enzymes that make copies of the DNA or RNA genomes of viruses – nucleic acid polymerases – can be placed into two broad categories depending on whether or not they require a primer, a short piece of DNA or RNA, to get going. The structure of the primer-independent RNA polymerase of hepatitis C virus reveals how a priming platform is built into the enzyme.

The requirement for a primer in the initiation step of nucleic acid synthesis varies among the different classes of polymerases. All DNA polymerases are primer-dependent enzymes, while DNA-dependent RNA polymerases initiate RNA synthesis de novo – without a primer. Some RNA-dependent RNA polymerases can also initiate RNA synthesis without a primer: the enzyme begins by adding the first base complementary to the template RNA (illustrated). Other RNA-dependent RNA polymerases require a primer to initiate synthesis. Examples shown on the illustration include the protein-linked primer of picornaviruses, which consists of the protein VPg covalently attached to two U residues. The primer for influenza virus mRNA synthesis is a capped oligonucleotide 12-14 bases in length that is cleaved from the 5′ end of cellular mRNA.

The structure of the RNA-dependent RNA polymerase of hepatitis C virus reveals how a primer-independent RNA polymerase positions the first nucleotide on the RNA template. This process is illustrated below. With the RNA template (dark green) in the active site of the enzyme (panel A), a short beta-loop (brown) provides a platform on which the first complementary nucleotide (light green) is added to the template. The second nucleotide is then added (panel B), producing a dinucleotide primer for RNA synthesis. At this point nothing further can happen because  the priming platform blocks the exit of the RNA product from the enzyme (panel B). The solution to this problem is that the polymerase undergoes a conformational change that moves the priming platform out of the way and allows the newly synthesized complementary RNA (panel C, light green) to exit as the enzyme moves along the template strand.

 HCV priming of RNA synthesis

The structure of the RNA polymerase of hepatitis C virus reveals that it is not really a primer-independent enzyme: a dinucleotide primer is synthesized by the polymerase using a protein platform in the active site. Such protein platforms also appear to be involved in the priming of RNA synthesis by other flaviviruses (dengue and West Nile viruses), influenza virus (genome RNA synthesis is primer independent), reovirus, and bacteriophage phi6. Perhaps all viral RNA-dependent RNA polymerases are dependent on such priming platforms to initiate RNA synthesis.

Filed Under: Basic virology, Information Tagged With: crystal structure, hepatitis a virus, priming, RNA dependent RNA polymerase, rna synthesis, viral, virology, virus

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.