• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

mRNA-1273

Spikevax Induces Durable Protection from the Delta Variant in Rhesus Macaques

4 November 2021 by Gertrud U. Rey

by Gertrud U. Rey

It is currently not clear how long SARS-CoV-2 vaccine-induced immunity lasts. The gold standard for determining the efficacy of a vaccine is the “challenge” study, which involves intentionally infecting immunized subjects with the pathogen against which they were immunized. Such studies are typically done in non-human primates, because it is unethical to deliberately infect humans with pathogens that cause serious morbidity and mortality.

A recent preprint by Kizzmekia Corbett and others describes experiments done to assess the efficacy of Moderna’s SARS-CoV-2 “Spikevax” vaccine in rhesus macaques one year after vaccination. The authors immunized eight animals with two doses of Spikevax at four-week intervals and then collected blood samples, nasal swabs, and lung wash samples at various time points over the course of the following year. The macaques were then challenged with the SARS-CoV-2 delta variant virus at 49 weeks, and more samples were collected at different time points after challenge.

Blood samples collected at 6, 24, and 48 weeks post-vaccination were used to analyze the ability of IgG antibodies in these samples to bind the receptor-binding domains of three different viruses: 1) “ancestral” SARS-CoV-2, which had the exact spike protein antigen encoded in the vaccine, 2) the delta variant, and 3) the beta variant. These latter two had variant spike proteins. IgG antibodies are mostly blood-resident and provide the majority of antibody-based immunity against invading pathogens. IgG levels were highest at 6 weeks after vaccination for all three viruses; they then declined rapidly between 6 weeks and 24 weeks, and more slowly between 24 weeks and 48 weeks. Most IgG detected at 6 weeks bound ancestral virus, with 5.4-fold and 8-fold fewer IgG molecules binding the delta and beta variants, respectively. However, when delta and beta variant-specific IgG antibodies were tested for their ability to block binding between SARS-CoV-2 and its cognate ACE2 receptor, they inhibited almost 100% of binding of both delta and beta variant viruses, suggesting that the antibodies were still functional in preventing infection, in spite of their diminished quantity.

The ability of blood-resident IgG antibodies to neutralize the three respective viruses followed a similar trend, with a gradual decline in neutralizing activity against all viruses by 48 weeks post-vaccination. Interestingly, even though the quantity of total binding and neutralizing antibodies targeting the delta variant decreased over time, the number of antibodies targeting regions associated with neutralization increased. In addition, the binding avidity of antibodies to ancestral virus increased significantly between week 6 and 24 and remained steady through week 48 post-vaccination. In contrast to affinity, which measures the strength of the binding interaction between antigen and antibody at a single binding site, avidity measures the total binding strength of an antibody at every binding site. These two shifts – the increase in the number of antibodies binding targets associated with neutralization and the increase in antibody avidity over time in spite of a decrease in total antibody levels – are suggestive of a maturing immune response that is more focused on viral regions of high immunological relevance. It is noteworthy to mention that the regions associated with neutralization are outside of areas where the variant viruses have accumulated changes in the spike protein, further implying that Spikevax and other SARS-CoV-2 vaccines are just as effective against viral variants as they are against ancestral virus.

Next, the authors analyzed lung wash samples and nasal swabs for delta-binding IgG and IgA antibodies. IgA antibodies are predominantly found in mucus membranes and their fluids, where they protect against invasion by inhaled and ingested pathogens. IgG kinetics in the lung were similar to those observed in the blood – both binding and neutralizing IgG to all three viruses were highest at 6 weeks after vaccination and decreased steadily over time until they were indistinguishable to those observed in unvaccinated animals. In contrast, IgG levels in the nose increased through week 25, plateaued, and remained stable through week 42 post-vaccination. IgA levels in the lung were highest at week 6 post-vaccination, but decreased to levels similar to those observed in unvaccinated animals by week 24. IgA levels in the nose were similar to those in unvaccinated animals at all time points. These results suggest that although SARS-CoV-2 vaccination may not induce a detectable mucosal immune response in the nose, it does induce good initial mucosal immunity in the lung, which is typically the site of severe COVID-19. This immunological difference between the lung and the nose might also explain why SARS-CoV-2 vaccines are more effective at preventing severe disease than at preventing infection.

The authors also analyzed blood samples from vaccinated animals for the presence of SARS-CoV-2-specific memory B cells, which can quickly produce spike-specific antibodies upon subsequent exposure to SARS-CoV-2. At week 6 post-vaccination, about 0.14% of all memory B cells were specific for the ancestral virus, and about 0.09% were specific for the delta variant. In comparison, about 2.5% of all memory B cells were specific for both the ancestral virus and the delta variant, and this high proportion of dual-binding to single-binding cells remained constant through week 42 post-vaccination.

To see whether these vaccine-induced immune parameters are protective after viral challenge, the authors infected the animals with delta variant virus at 49 weeks after the initial immunization. Lung washes and nasal swabs were collected on days 2, 4, 7, and 14 after challenge to monitor viral replication. On day 2 after challenge, vaccinated animals had about 11-fold fewer viral RNA copies per milliliter in their lungs than unvaccinated animals, and these RNA levels declined rapidly over the following days. In contrast, viral RNA levels in unvaccinated animals remained significantly elevated through day 7 post-infection. Viral RNA levels in the nose followed a similar trend; however, their decline in vaccinated animals was not as dramatic as that observed in the lung.

Antibodies to all three viruses in the lungs of vaccinated animals were significantly higher on day 4 after challenge than at week 42 after immunization, suggesting that memory B cell responses to infection were quick and robust. Viral challenge after vaccination also induced both T helper cells, which stimulate B cells to make antibodies, and cytotoxic T cells, which kill virus-infected cells. Analysis of lung tissue also revealed that vaccination prevented lung pathology and protected the lower respiratory tract from severe inflammation after infection.

Perhaps the most interesting observation in the study relates to whether vaccinated individuals who become infected replicate and transmit virus to others. When the authors analyzed lung wash samples for T cells specific for the SARS-CoV-2 N protein, which is not encoded in the Spikevax vaccine, they only found these cells in unvaccinated animals. This suggests that even though it had been one year since vaccination, immunized animals that were then infected did not replicate the challenge virus to a sufficient extent to produce T cells specific for the SARS-CoV-2 N protein – a response that would only be elicited by actual infection with whole virus. In other words, the memory response to the SARS-CoV-2 spike protein induced by the vaccine eliminated incoming virus so quickly that the immune system had no chance to mount a response to the viral N protein encoded in the challenge virus, presumably because the virus was cleared quickly.

In summary, vaccinated animals appear to be better protected from severe disease and to clear virus faster than unvaccinated animals. This result aligns with data published in a previous preprint, which showed that viral RNA levels in delta variant-infected people who had been vaccinated prior to infection declined more rapidly than in people who were not vaccinated. And although monkeys are not human, previous studies assessing the protective efficacy of Spikevax have shown that rhesus macaques are reliably predictive of outcomes in humans, making them a great model for determining the effects of waning antibody levels on long-term protection against SARS-CoV-2 infection.

[Kizzmekia Corbett, a viral immunologist at Harvard who was central to the development of the Moderna mRNA vaccine, was previously a guest on TWiV 670. The preprint described in this post was also discussed on TWiV 824.]

Filed Under: Basic virology, Gertrud Rey Tagged With: ACE2, antibody, antibody affinity, antibody avidity, delta variant, human challenge model, IgA, IgG, immunity, memory B cell, Moderna, mRNA-1273, mucosal immunity, neutralizing antibody, rhesus macaque, SARS-CoV-2, spike protein, vaccine, viral replication, viral RNA

TWiV 670: Coronavirus vaccine preparedness with Kizzmekia Corbett

8 October 2020 by Vincent Racaniello

Kizzmekia Corbett joins TWiV to review her career and her work on respiratory syncytial virus, influenza virus, and coronaviruses and coronavirus vaccines, including her role in development and testing of a spike-encoding mRNA vaccine, and then we review the Nobel Prize for discovery of hepatitis C virus.

Click arrow to play
Download TWiV 670 (76 MB .mp3, 127 min)
Subscribe (free): iTunes, Google Podcasts, RSS, email

Become a patron of TWiV!

Show notes at microbe.tv/twiv

Filed Under: This Week in Virology Tagged With: coronavirus, COVID-19, influenza virus, mRNA-1273, pandemic, prefusion conformation, respiratory syncytial virus, SARS-CoV-2, spike, vaccine, viral, virology, virus, viruses

A SARS-CoV-2 Vaccine Candidate

16 July 2020 by Gertrud U. Rey

by Gertrud Rey

In a highly publicized press release dated May 18, 2020, the biotech company Moderna announced preliminary results from a phase I clinical trial for a SARS-CoV-2 vaccine candidate. However, the company only provided brief, conclusory statements at that time. On July 14, the results from the trial were finally published in the New England Journal of Medicine.

The vaccine candidate is named “mRNA-1273” because it consists of an mRNA (messenger RNA) that encodes the full length, 1,273 amino acid SARS-CoV-2 spike protein. The mRNA is encapsulated in a lipid nanoparticle, which protects the mRNA from degradation and ensures proper delivery into cells. Upon injection into a vaccine recipient, the mRNA would enter cells and be translated by the host protein synthesis machinery into the SARS-CoV-2 spike protein, which would then serve as an antigen to promote an immune response. The spike protein has been the primary antigenic choice for a number of SARS-CoV-2 vaccine candidates because it mediates binding of the virus to the ACE2 host cell receptor via its receptor-binding domain (RBD) and fusion of the viral particle with the host cell membrane via its fusion domain. Both of these domains are highly immunogenic and are targeted by neutralizing antibodies, which bind viral antigens to inactivate virus and prevent infection of new cells.  

Phase I clinical trials typically involve a small group of patients and aim to identify which dose of a new drug produces optimal outcomes with the fewest side effects. The Moderna trial enrolled 45 healthy adults, ranging in age from 18-55. Vaccine recipients were divided into three groups, with individuals in each group receiving a dose of either 25, 100, or 250 micrograms of mRNA-1273 in two injections spaced 28 days apart. The key observations were as follows:

  • side effects were mild to moderate;
  • all subjects produced RBD- and fusion domain-binding IgG antibodies by day 15 post-vaccination; 
  • responses were dose-dependent, with higher vaccine doses eliciting higher levels of antibodies; 
  • subjects in all dose groups produced RBD- and fusion domain-specific neutralizing antibodies only in response to the second dose;
  • binding and neutralizing antibody levels in recipients of the 100 and 250 microgram doses were similar in magnitude to those observed in sera from SARS-CoV-2-recovering patients; and,
  • recipients of the 25 microgram dose also produced T helper cells, while recipients of the 100 microgram dose produced both T helper cells and cytotoxic T cells specific to the vaccine spike protein (for a review of the relevance of these cells click here).  

Overall these results seem promising; mRNA-1273 activated both arms of the adaptive immune response by inducing both neutralizing antibody and T cell responses specific to the SARS-CoV-2 spike protein RBD and fusion domains. Moreover, because the mRNA encodes the full-length spike protein, vaccine recipients may also produce non-neutralizing antibodies specific to additional potentially immunogenic domains. As noted by immunologist Jon Yewdell in a recent letter to TWiV, non-receptor-binding domains may not mediate classic neutralization of virus in an vitro scenario, but they may provide additional protection in infected individuals. For example, flu studies in mice have shown that non-neutralizing antibodies may also protect against disease by various mechanisms that have yet to be identified. Furthermore, RNA-based vaccines are considered safer than traditional vaccines because they don’t contain infectious virus. They are particularly suitable for emerging pathogens because they can be produced more quickly and cost-effectively than traditional vaccines. 

However, the trial also had several limitations. The study group was small and the vaccine was not tested in subjects over the age of 55, a group who often mount a weaker immune response and are more likely to develop severe COVID-19. At the present time it is also impossible to know how long the observed immune responses will last because it has been less than two months since the trial participants were immunized. Because SARS-CoV-2 is considered a dangerous pathogen, traditional challenge trials, in which an immunized individual is intentionally infected with the pathogen against which he was immunized, will likely not be done, so we have no way of knowing if the vaccine is effective until vaccine recipients have been naturally exposed to the virus. It may also be difficult to know whether a person was exposed. Moreover, because mRNA vaccines have never been licensed for use in humans, there are many unknown factors, such as the potential for unanticipated long-term side effects.   

There is no doubt that we are in dire need of a vaccine for SARS-CoV-2. However, a vaccine has to be both safe and effective, two criteria that have repeatedly crippled the development of vaccines for respiratory syncytial virus, herpes simplex virus, hepatitis C virus, and HIV, just to name a few. While the results from the Moderna vaccine trial warrant cautious optimism, it is too early to draw valid conclusions in regard to efficacy and long-term protection. An ongoing placebo-controlled phase II trial evaluating the efficacy of 50 and 100 microgram doses of mRNA-1273 in 600 healthy adults, and an upcoming phase III efficacy trial aiming to evaluate the 100 microgram dose in 30,000 participants, will hopefully provide more definitive answers. 

[The Moderna mRNA-1273 vaccine was previously discussed on episodes 592, 616, 626, and 637 of TWiV.]

Filed Under: Basic virology, Gertrud Rey Tagged With: COVID-19, Moderna, mRNA, mRNA-1273, pandemic, SARS-CoV-2, spike protein, vaccine, viral, virology, virus, viruses

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.