• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

Michael Osterholm

Ebolavirus will not become a respiratory pathogen

21 February 2015 by Vincent Racaniello

sneezeAn otherwise balanced review of selected aspects of Ebolavirus transmission falls apart when the authors hypothesize that ‘Ebola viruses have the potential to be respiratory pathogens with primary respiratory spread.’

The idea that Ebolavirus might become transmitted by the respiratory route was suggested last year by Michael Osterholm in a Times OpEd. That idea was widely criticized by many virologists, including this writer.  Now he has recruited 20 other authors, including Ebola virologists, in an attempt to lend legitimacy to his hypothesis. Unfortunately the new article adds no new evidence to support this view.

In the last section of the review article the authors admit that they have no evidence for respiratory transmission of Ebolavirus:

It is very likely that at least some degree of Ebola virus transmission currently occurs via infectious aerosols generated from the gastrointestinal tract, the respiratory tract, or medical procedures, although this has been difficult to definitively demonstrate or rule out, since those exposed to infectious aerosols also are most likely to be in close proximity to and in direct contact with an infected case.

It is possible that some short-distance transmission of Ebolavirus occurs through the air. But claiming that it is ‘very likely’ to be taking place is an overstatement considering the lack of evidence. As might be expected, ‘very likely’ is exactly the phrase picked up by the Washington Post.

I find the lack of critical thinking in the following paragraph even more disturbing:

To date, investigators have not identified respiratory spread (either via large droplets or small-particle aerosols) of Ebola viruses among humans. This could be because such transmission does not occur or because such transmission has not been recognized, since the number of studies that have carefully examined transmission patterns is small. Despite the lack of supportive epidemiological data, a key additional question to ask is whether primary pulmonary infections and respiratory transmission of Ebola viruses could be a potential scenario for the future.

Why is the possibility of respiratory transmission of Ebolaviruses a ‘key additional question’ when there has been no evidence for it to date? To make matters worse, the authors have now moved from short-range transmission of the virus by droplets, to full-blown respiratory aerosol transmission.

The authors present a list of reasons why they think Ebolavirus could go airborne, including: isolation of Ebolaviruses from saliva; presence of viral particles in pulmonary alveoli on human autopsies; and cough, which can generate aerosols, can be a symptom of Ebolavirus disease. The authors conclude that because of these properties, the virus would not have to change very much to be transmitted by aerosols.

I would conclude the opposite from this list of what Ebolavirus can do: there is clearly a substantial block to respiratory transmission that the virus cannot overcome. Perhaps the virus is not stable enough in respiratory aerosols, or there are not enough infectious viruses in aerosols to transmit infection from human to human. Overcoming these blocks might simply not be biologically possible for Ebolavirus. A thoughtful discussion of these issues is glaringly absent in the review.

The conclusion that Ebolavirus is  ‘close’ to becoming a full-blown respiratory pathogen reveals how little we understand about the genetic requirements for virus transmission. In fact the authors cannot have any idea how ‘close’ Ebolavirus is to spreading long distances through the air.

It is always difficult to predict what viruses will or will not do. Instead, virologists observe what viruses have done in the past, and use that information to guide their thinking. If we ask the simple question, has any human virus ever changed its mode of transmission, the answer is no. We have been studying viruses for over 100 years, and we’ve never seen a human virus change the way it is transmitted. There is no evidence to believe that Ebolavirus is any different.

Viruses are masters of evolution, but apparently one item lacking from their repertoire is the ability to change the way that they are transmitted.

Such unfounded speculation would largely be ignored if the paper were read only by microbiologists. But Ebolavirus is always news and even speculation does not go unnoticed. The Washington Post seems to think that this review article is a big deal. Here is their headline: Limited airborne transmission of Ebola is ‘very likely’ new analysis says.

Gary Kobinger, one of the authors, told the Washington Post that ‘we hope that this review will stimulate interest and motivate more support and more scientists to join in and help address gaps in our knowledge on transmission of Ebola’. Such hope is unrealistic, because few can work on this virus, which requires the highest levels of biological containment, a BSL-4 laboratory.

I wonder if Osterholm endorses Kobinger’s hopes. After all, he opposed studies of influenza virus transmission in ferrets, claiming that they are too dangerous. And the current moratorium on research that would help us understand aerosol transmission of influenza viruses is a direct result of objections by Osterholm and his colleagues about this type of work. The genetic experiments that are clearly needed to understand the limitations of Ebolavirus transmission would never be permitted, at least not with United States research dollars.

The gaps in our understanding of virus transmission are considerable. If virologists are not able to carry out the necessary experiments to fill these gaps, all we will have is rampant and unproductive speculation.

Filed Under: Basic virology, Commentary, Information Tagged With: aerosol, droplets, Ebola, ebolavirus, hemorrhagic fever, Michael Osterholm, mutation, respiratory transmission, transmission, viral, virology, virus

What we are not afraid to say about Ebola virus

18 September 2014 by Vincent Racaniello

sneezeIn a recent New York Times OpEd entitled What We’re Afraid to Say About Ebola, Michael Osterholm wonders whether Ebola virus could go airborne:

You can now get Ebola only through direct contact with bodily fluids. If certain mutations occurred, it would mean that just breathing would put one at risk of contracting Ebola. Infections could spread quickly to every part of the globe, as the H1N1 influenza virus did in 2009, after its birth in Mexico.

Is there any truth to what Osterholm is saying?

Let’s start with his discussion of Ebola virus mutation:

But viruses like Ebola are notoriously sloppy in replicating, meaning the virus entering one person may be genetically different from the virus entering the next. The current Ebola virus’s hyper-evolution is unprecedented; there has been more human-to-human transmission in the past four months than most likely occurred in the last 500 to 1,000 years.

When viruses enter a cell, they make copies of their genetic information to assemble new virus particles. Viruses such as Ebola virus, which have genetic information in the form of RNA (not DNA as in other organisms), are notoriously bad at copying their genome. The viral enzyme that copies the RNA makes many errors, perhaps as many as one or two each time the viral genome is reproduced. There is no question that RNA viruses are the masters of mutation. This fact is in part why we need a new influenza virus vaccine every few years.

The more hosts infected by a virus, the more mutations will arise. Not all of these mutations will find their way into infectious virus particles because they cause lethal defects. But Osterholm’s statement that the evolution of Ebola virus is ‘unprecedented’ is simply not correct. It is only what we know. The virus was only discovered to infect humans in 1976, but it surely infected humans long before that. Furthermore, the virus has been replicating, probably for millions of years, in an animal reservoir, possibly bats. There has been ample opportunity for the virus to undergo mutation.

More problematic is Osterholm’s assumption that mutation of Ebola virus will give rise to viruses that can transmit via the airborne route:

If certain mutations occurred, it would mean that just breathing would put one at risk of contracting Ebola. Infections could spread quickly to every part of the globe, as the H1N1 influenza virus did in 2009, after its birth in Mexico.

The key phrase here is ‘certain mutations’. We simply don’t know how many mutations, in which viral genes, would be necessary to enable airborne transmission of Ebola virus, or if such mutations would even be compatible with the ability of the virus to propagate. What allows a virus to be transmitted through the air has until recently been unknown. We can’t simply compare viruses that do transmit via aerosols (e.g. influenza virus) with viruses that do not (e.g. HIV-1) because they are too different to allow meaningful conclusions.

One approach to this conundrum would be to take a virus that does not transmit among mammals by aerosols – such as avian influenza H5N1 virus – and endow it with that property. This experiment was done by Fouchier and Kawaoka several years ago, and revealed that multiple amino acid changes are required to allow airborne transmission of H5N1 virus among ferrets. These experiments were met with a storm of protest from individuals – among them Michael Osterholm – who thought they were too dangerous. Do you want us to think about airborne transmission, and do experiments to understand it – or not?

The other important message from the Fouchier-Kawaoka ferret experiments is that the H5N1 virus that could transmit through the air had lost its ability to kill. The message is clear: gain of function (airborne transmission) is accompanied by loss of function (virulence).

When it comes to viruses, it is always difficult to predict what they can or cannot do. It is instructive, however, to see what viruses have done in the past, and use that information to guide our thinking. Therefore we can ask: has any human virus ever changed its mode of transmission?

The answer is no. We have been studying viruses for over 100 years, and we’ve never seen a human virus change the way it is transmitted.

HIV-1 has infected millions of humans since the early 1900s. It is still transmitted among humans by introduction of the virus into the body by sex, contaminated needles, or during childbirth.

Hepatitis C virus has infected millions of humans since its discovery in the 1980s. It is still transmitted among humans by introduction of the virus into the body by contaminated needles, blood, and during birth.

There is no reason to believe that Ebola virus is any different from any of the viruses that infect humans and have not changed the way that they are spread.

I am fully aware that we can never rule out what a virus might or might not do. But the likelihood that Ebola virus will go airborne is so remote that we should not use it to frighten people. We need to focus on stopping the epidemic, which in itself is a huge job.

Filed Under: Basic virology, Information Tagged With: aerosol transmission, airborne transmission, ebola virus, evolution, hemorrhagic fever, Michael Osterholm, mutation, viral, virology, virus

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.