• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

membrane fusion

TWiV 472: The riddle of the skinks

17 December 2017 by Vincent Racaniello

The TWiV team reveal the origin of the poxvirus membrane, and how a retrovirus drove the development of the placenta of a lizard.

Click arrow to play
Download TWiV 472 (69 MB .mp3, 114 min)
Subscribe (free): iTunes, RSS, email

Become a patron of TWiV!

Show notes at microbe.tv/twiv

Filed Under: This Week in Virology Tagged With: endogenous retrovirus, endoplasmic reticulum, evolution, exaptation, Mabuya lizard, membrane, membrane fusion, mutant, placenta, poxvirus, poxvirus crescent, retrovirus, syncytin, syncytiotrophoblast, viral, virology, virus, viruses

Did viruses enable sex?

9 March 2017 by Vincent Racaniello

Dengue virus E glycoproteins (monomer at top) lie flat on the virus particle as dimers (middle). At endosomal low pH, three monomers reorient to place the fusion peptide (orange) into the cell membrane. Image credit.

A key step in sexual reproduction is the fusion of haploid cells to form a diploid zygote, yet the molecular mechanism underlying this joining of cells is poorly understood. Two studies reveal amazing similarities between proteins required for fusion of sperm and egg, and virus with host cells.

A screen for genes that cause male sterility in the flowering plant Arabidopsis led to the identification of the HAP2 protein. This protein was later found to be important for sperm-egg fusion in Arabidopsis and in the unicellular algae Chlamyodomonas. 

Homology modeling shows that the HAP2 protein looks very much like a class II viral fusion protein (illustrated). Found in dengue virus and many related viruses, dimers of these viral glycoproteins lie flat on the viral membrane, and are comprised largely of beta-strands. At one end of the protein is a fusion loop which allows the virus and cell membranes to join at the start of infection.

The HAP2 protein also has what looks to be a viral fusion loop. Removal or alteration of this sequence in Tetrahymena prevents fusion of mating cells. The fusion loop of the dengue virus E glycoprotein cannot substitute for the HAP2 sequence. Furthermore, vesicular stomatitis viruses with HAP2 in place of the viral glycoprotein cannot enter cells. However the results of biophysical experiments indicate that the HAP2 fusion loop can interact with membrane lipids in ways reminiscent of viral fusion peptides.

Solution of the atomic structure of HAP2 reveals a trimer with protein folds and an upright ‘hairpin’ configuration (illustrated for dengue virus) typical of class II fusion proteins. While acidification of viral type II fusion proteins is required for rearrangement to the post-fusion form, the trigger for HAP2 is not known.

These results clearly show that HAP2 is a type II fusion protein that mediates the joining of haploid gametes in the first step of sexual reproduction. These viral and cell proteins are so similar that it is highly improbable that they arose by convergent evolution. HAP2 is ancient: besides green algae and plants, it is also found in unicellular protozoa, cnidarians, hemichordates, and arthropods, indicating that it was likely present in the last common ancestor of eukaryotes. But viruses existed before the evolution of eukaryotic sex, raising the scenario that type II fusion proteins first arose in viruses, which provided them to eukaryotic cells for use in gamete cell fusion.

Without viruses, there would be no sex, and therefore no humans, or many other animals on Earth.

We continue to recognize new ways that the evolution of eukaryotic life has depended on viruses. These include a viral gene used to produce the placenta; enhancer elements for innate immunity; prions; and the nucleus. What exactly did eukaryotes invent?

Filed Under: Basic virology, Information Tagged With: Arabidopsis, dengue virus, fertilization, fusion loop, gamete, glycoprotein, HAP2, membrane fusion, sperm-egg fusion, type II fusion protein, viral, virology, virus, viruses

TWiV 314: Einstein goes viral

7 December 2014 by Vincent Racaniello

On episode #314 of the science show This Week in Virology, Vincent travels to Albert Einstein College of Medicine where he speaks with Kartik, Ganjam, and Margaret about their work on Ebolavirus entry, a tumor suppressor that binds the HIV-1 integrase, and the entry of togaviruses and flaviviruses into cells.

You can find TWiV #314 at www.microbe.tv/twiv.

Filed Under: This Week in Virology Tagged With: CDC protein, checkpoint, cholesterol, ebola virus, Ebolaviruses, endosome, hemorrhagic fever, HIV-1, INI1, integrase, lysosome, membrane fusion, monoclonal antibody, NPC1, rhabdoid tumor, tumor suppressor, viral, virology, virus, virus entry

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.