• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

intrinsic defense

TWiV 380: Viruses visible in le microscope photonique

13 March 2016 by Vincent Racaniello

TWiVOn episode #380 of the science show This Week in Virology, the TWiVeroos deliver the weekly Zika Report, then talk about a cryoEM structure of a plant virus that reveals how the RNA genome is packaged in the capsid, and MIMIVIRE, a CRISPR-like defense system in giant eukaryotic viruses.

You can find TWiV at microbe.tv/twiv, or you can listen below.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV380.mp3″]

Click arrow to play
Download TWiV 380 (80 MB .mp3, 110 min)
Subscribe (free): iTunes, RSS, email

Filed Under: This Week in Virology Tagged With: amoeba, birth defects, capsid, central nervous system, congenital zika syndrome, cowpea mosaic virus, CRISPR/Cas, cryoEM, genome packaging, Guillain-Barré syndrome, intrinsic defense, meningoencephalitis, microcephaly, MIMIVIRE, mimivirus, myelitis, viral, virology, viruria, virus, viruses, zika virus

A huge host contribution to virus mutation rates

5 November 2015 by Vincent Racaniello

HIV-1 mutation rateThe high mutation rate of RNA viruses enables them to evolve in the face of different selection pressures, such as entering a new host or countering host defenses. It has always been thought that the sources of such mutations are the enzymes that copy viral RNA genomes: they make random errors which they cannot correct. Now it appears that a cell enzyme makes an even greater contribution the mutation rate of an RNA virus.

Deep sequencing was used to determine the mutation rate of HIV-1 in the blood of AIDS patients by searching for premature stop codons in open reading frames of viral RNA. Because stop codons terminate protein synthesis, they do not allow production of infectious viruses. Therefore they can be used to calculate the mutation rate in the absence of selection. The mutation rate calculated in this way, 0.000093 mutations per base per cell, was slightly higher than previously calculated from studies in cell culture.

When HIV-1 infects a cell, the enzyme reverse transcriptase converts its RNA genome to DNA, which then integrates into the host cell genome. Identification of stop codons in integrated viral DNA should provide an even better estimate of the mutation rate of reverse transcriptase, because mutations that block the production of infectious virus have not yet been removed by selection. The mutation rate calculated by this approach was 0.0041 mutations per base per cell, or one mutation every 250 bases. This mutation rate is 44 times higher than the value calculated from viral RNA in patient plasma (illustrated).

Sequencing of integrated viral DNA from many patients revealed that the vast majority of mutations leading to insertion of stop codons – 98% – were the consequence of editing by the cellular enzyme APOBEC3G. This enzyme is a deaminase that changes dC to dU in the first strand of viral DNA synthesized by reverse transcriptase. APOBEC3G constitutes an intrinsic defense against HIV-1 infection, because extensive mutation of the viral DNA reduces viral infectivity. Indeed, most integrated HIV proviruses are not infectious as a consequence of APOBEC3G-induced mutations. That infection proceeds at all is due to incorporation of the viral protein vif in the virus particles. Vif binds APOBEC3G, leading to its degradation in cells.

The mutation rate of integrated HIV-1 DNA calculated by this method is much higher than that of other RNA viruses. This high mutation rate is driven by the cellular enzyme, APOBEC3G. At least half of the mutations observed in plasma viral RNAs are also contributed by this enzyme.

It has always been thought that error-prone viral RNA polymerases are largely responsible for the high mutation rates of RNA viruses. The results of this study add a new driver of viral variation, a cellular enzyme. APOBEC enzymes are known to introduce mutations in the genomes of other viruses, including hepatitis B virus, papillomaviruses, and herpesviruses. Furthermore, the cellular adenosine deaminase enzyme can edit the genomes of RNA viruses such as measles virus, parainfluenza virus, and respiratory syncytial virus. Cellular enzymes may therefore play a much greater role in the generation of viral diversity than previously imagined.

Filed Under: Basic virology, Information Tagged With: APOBEC3G, deaminase, deamination, evolution, HIV-1, intrinsic defense, mutation rate, quasispecies, retrovirus, reverse transcriptase, viral, virology, virus

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.