• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

herpes

Early Immune Responses to Herpes Simplex Virus Type I Infection

6 May 2021 by Gertrud U. Rey

by Gertrud U. Rey

Herpes simplex viruses infect cells of the skin and mucous membranes, where they establish a lifelong persistent infection in sensory neurons. Sporadic reactivation and viral shedding may lead to painful oral and genital disease and a three to five-fold increased risk of HIV transmission. There is currently no vaccine to prevent infection with herpes simplex virus type 1 or type 2 (HSV-1 or HSV-2).

Until recently it was thought that initial interactions of HSV-1 with the immune system only involve Langerhans cells. Langerhans cells are skin-resident sentinel macrophages that detect microbial antigens, and they engulf, process, and present these antigens to T cells for downstream immune functions. However, a recent study suggests that early during infection, HSV-1 also interacts with a newly identified immune cell known as an epidermal conventional dendritic cell type 2 (Epi-cDC2). Like Langerhans cells, dendritic cells can swallow microbe-infected cells and present the microbial antigens to T helper cells, ultimately triggering the actions of cytotoxic T cells, which directly kill infected cells.

The study aimed to better define the role of Epi-cDC2s in early HSV-1 infection using ex vivo explants as a model system. The explants consisted of pieces of human inner foreskin that were mounted on specialized gelatin scaffolds to mimic the in vivo environment encountered by HSV-1 during infection. The authors exposed the explants to an HSV-1 virus in which a viral membrane protein was fused to a green fluorescent protein (GFP), allowing them to visually track a resulting infection using a fluorescence microscope. This method revealed that at 24 hours after exposure to the GFP-tagged HSV-1, both Langerhans cells and Epi-cDC2s contained the virus in their cytoplasm, suggesting that these cells either engulfed HSV-1-infected skin cells and/or were themselves infected by HSV-1.

To determine whether the presence of HSV-1 in the cytoplasm of Epi-cDC2s resulted from infection and replication and not just from engulfing infected skin cells, the authors first did the following. They exposed cell cultures of Epi-cDC2s to HSV-1. After six hours of this exposure, Epi-cDC2s contained about as much virus as did control Langerhans cells, which are known to be infected by HSV-1. However, at 18 hours, Epi-cDC2s contained significantly higher HSV-1 levels than Langerhans cells, suggesting increased entry/uptake of virus into Epi-cDC2s compared to Langerhans cells. Next, to assess whether HSV-1 was also replicating in the Epi-cDC2 cells, not just entering them, the authors treated the cells with a fluorescent antibody that binds ICP27, a viral protein needed for replication. A significantly greater portion of Epi-cDC2s than Langerhans cells expressed ICP27, suggesting that HSV-1 was replicating, and doing so more efficiently in Epi-cDC2s.

Viruses may enter a host cell by a variety of mechanisms. One common mechanism, called receptor-mediated endocytosis, involves the formation of cell membrane-derived vesicles. In one version of this process, which requires a low pH, viral binding to a cell surface receptor triggers the cellular membrane to fold inward and form a slightly acidic “endosome” around the virus. Another version of receptor-mediated endocytosis is not dependent on a low pH, but requires cholesterol molecules and the motor protein actin to form cell surface protrusions called “ruffles.” When the ruffles become large enough, they collapse back onto the membrane and form large fluid-filled vesicles encasing the virus. In both of these versions of receptor-mediated endocytosis, the resulting vesicles enter the cytoplasm, where they eventually release their contents. In yet another mechanism of entry, also independent of acidic pH, viruses may simply fuse with the plasma membrane and deliver their contents into the cytoplasm.

Although HSV-1 can enter cells by any of these pathways, its entry mechanism differs in different types of cells. To determine which pathway HSV-1 uses to enter Langerhans cells and Epi-cDC2s, the authors treated both types of cells with a drug that prevents acidification of endosomes. They then infected the cells with the GFP-tagged HSV-1 and measured infection by quantitating GFP with a fluorescence microscope. Increasing doses of the drug led to increased inhibition of infection of Langerhans cells, suggesting that these cells are infected with HSV-1 via a pH-dependent mechanism. In contrast, the drug did not affect infection of Epi-cDC2s, suggesting that HSV-1 does not require an acidic pH for entering Epi-cDC2s.

To determine whether HSV-1 entry into Epi-cDC2s occurred via actin and cholesterol-dependent endocytosis, the authors treated Epi-cDC2s with inhibitors of actin or cholesterol prior to infection. Both treatments led to significant reduction in GFP fluorescence inside the cells, suggesting that cholesterol and actin are both important mediators of HSV-1 entry into Epi-cDC2s.

Langerhans cells express a cell surface receptor called langerin, which mediates entry of HIV and influenza A. To see whether this receptor is also required for entry of HSV-1, the authors infected Langerhans cells with HSV-1 in the presence of an antibody that neutralizes langerin. This inhibition of langerin expression led to diminished infection of Langerhans cells, suggesting that langerin is required for HSV-1 entry into them. In contrast, inhibition of langerin on Epi-cDC2s had no effect on HSV-1 infection efficiency, suggesting that, even though Epi-cDC2s do express some langerin, this receptor is not required for HSV-1 entry of these cells.

HSV-1 and HSV-2 are of high public health concern, and a vaccine to prevent infection with these viruses is urgently needed. Immune control of HSV-1/-2 infection and resolution of genital herpes lesions requires the collective action of various types of T cells, which are likely primed by different dendritic cell subsets. Understanding the dynamics of the initial interactions of HSV-1 and HSV-2 with cells of the immune system may result in better strategies for HSV-1/-2 vaccines. The pathways described here have important implications in vaccine design and prevention of persistent infection of neuronal cells.

Filed Under: Basic virology, Gertrud Rey Tagged With: actin, cholesterol, dendritic cell, herpes, herpes simplex virus, herpes simplex virus 1, HSV-1, infection, Langerhans cell, macrophage, receptor-mediated endocytosis, replication

TWiV 212: Apocalypse TWiV 122112 212

23 December 2012 by Vincent Racaniello

On episode #212 of the science show This Week in Virology, the TWiVerers answer listener email about genetically modified chickens, a hendra vaccine for horses, online education, curing color blindness, Roosevelt and polio, Th cells, and much more.

You can find TWiV #212 at www.microbe.tv/twiv.

Filed Under: This Week in Virology Tagged With: adeno-associated virus, coronavirus, email, GM food, Guillain-Barré, H3N2, HeLa, Hendra, herpes, influenza, listener, MOOC, norovirus, phage, SARS, viral, viral vector, virology, virus

TWiV 81: Be a virus, see the world

9 May 2010 by Vincent Racaniello

Hosts: Vincent Racaniello and Rich Condit

On episode #81 of the podcast This Week in Virology, Vincent and Rich answer listener questions on viruses and gluten allergy, RNA silencing, influenza virus, herpes simplex virus, HIV/AIDS, chronic fatigue syndrome, manicure salons, and the koala tea of Marseilles.

This episode is sponsored by Data Robotics Inc. Use the promotion code TWIVPOD to receive $75-$500 off a Drobo.

Win a free Drobo S! Contest rules here.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV081.mp3″]

Click the arrow above to play, or right-click to download TWiV #81 (68 MB .mp3, 94 minutes)

Subscribe to TWiV (free) in iTunes , at the Zune Marketplace, by the RSS feed, or by email, or listen on your mobile device with Stitcher Radio.

Links for this episode:

  • Virus infections and gluten intolerance on TWiS (thanks Jesper!)
  • Viral small RNAs in PLoS Pathogens (thanks Jason!)
  • Canadian Summit Awards (thanks Jim!)
  • Experimenting with phage at home (thanks Richard!)
  • CRISPR discovered by a dairy company (thanks Joel!)
  • Expedition to New Guinea to sample bird viruses – movie and blog entry (thanks Henrik!)
  • Preventing herpes with arginine and lysine – pdf (thanks Anthony!)
  • Chronic fatigue donors face rejection (thanks James!)
  • The Koala tea of Marseilles is not strained (thanks Stephen!)
  • The other Larson virus cartoon (jpg)
  • Letters read on TWiV 81

Weekly Science Picks

Rich Google Chrome browser ‘speed test‘ (and how it was made)
Vincent Inside the Outbreaks by Mark Pendergrast

Send your virology questions and comments (email or mp3 file) to twiv@microbe.tv or leave voicemail at Skype: twivpodcast. You can also post articles that you would like us to discuss at microbeworld.org and tag them with twiv.

Filed Under: This Week in Virology Tagged With: AIDS, CFS, chronic fatigue syndrome, gluten, herpes, HIV, influenza, koala tea, manicure, phage, rna silencing

Virology lecture #12: Infection basics

11 March 2010 by Vincent Racaniello


Download: .wmv (369 MB) | .mp4 (77 MB)

Visit the virology W3310 home page for a complete list of course resources.

Filed Under: Basic virology, Information Tagged With: herpes, infection basics, influenza, lecture, polio, viral, virology, virus, w3310, West Nile virus

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.