• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

H5N1

H5N1 – It’s All About the Transmission

2 March 2023 by Gertrud U. Rey 3 Comments

by Gertrud U. Rey

Recent news headlines have been highlighting the global spread of H5N1, the strain of influenza virus that is typically associated with “bird flu.” This outbreak is the largest in recorded history, involving at least 50 million dead birds and countless non-human mammals, including sea lions, otters, mink, foxes, cats, dogs, and skunks. But what does this mean for us?

Although the virus has so far infected about 1,000 people worldwide, most of these infections have been in individuals who had direct contact with infected birds, and thus, the infections likely originated from those animals. There is currently no evidence to suggest that H5N1 can transmit efficiently from one person to another, a factor that is critical for triggering a human pandemic. As far as we know, there are several obstacles that prevent sustained human-to-human transmission of H5N1.

The first obstacle has to do with the host cell surface receptor that mediates viral entry for influenza virus infection in humans. To enter a cell, human influenza viruses bind receptors that consist of a sialic acid molecule linked to galactose via an alpha 2,6 glycosidic bond, and these receptors are located mostly on cells of the upper respiratory tract. In contrast, avian influenza viruses (including H5N1) preferentially bind sialic acids with an alpha 2,3 linkage (illustrated), which are abundant on cells of the avian digestive tract and cells of the human lower respiratory tract. Although H5N1 can infect and replicate in cells of the lower respiratory tract, its transmission to other humans from the lower respiratory tract is very inefficient, meaning that H5N1-infected people typically do not pass the virus on to others. In other words, because H5N1 cannot efficiently replicate in the upper respiratory tract, it doesn’t typically transmit among humans. In order for H5N1 to pass easily from one person to another, it would at the very least need to acquire an amino acid change that allows it to bind a sialic acid receptor with an alpha 2,6 galactose linkage.

sialic acid

A second obstacle that prevents sustained human-to human transmission of H5N1 influenza virus involves the H5N1 polymerase enzyme, which is responsible for replicating the viral genome. To function properly, this enzyme needs to be in an environment with a temperature of approximately 40℃ – the average temperature of the avian digestive tract. Because the human upper respiratory tract has a temperature range of 33-35℃, the H5N1 polymerase would need to adapt to function in this temperature range in order for H5N1 to replicate and transmit more effectively from this site.

A third obstacle relates to the pH inside the membrane vesicle that forms around a viral particle once it enters a host cell. This vesicle, called an “endosome,” transports the viral particle through the cytoplasm until the viral and endosomal membranes fuse to allow the viral RNA to enter the host cell cytoplasm. Human-adapted influenza viruses undergo this membrane fusion most efficiently in the low pH conditions of the endosomes of human cells. However, H5N1 viruses require a much higher pH for fusion, meaning that they could easily degrade in the low pH environment of the human endosome, and thus not produce an effective infection that could transmit virus to other humans.

The segmented structure of the influenza virus genome allows for frequent reassortment between segments, such that if a host cell is co-infected with two different strains of influenza virus, the segments can reassort to produce new virus strains. Pigs are susceptible to infection by both avian and human influenza viruses, making them likely mixing vessels for such reassortment events. Reassortment between the “right” influenza virus genes could lead to a new version of H5N1 that could infect and transmit from cells of the human upper respiratory tract, thus triggering efficient human-to-human transmission and a potential pandemic.  

Fortunately, many scientists are preparing for such a scenario by developing H5N1-specific diagnostic tools, antiviral drugs, and vaccines. For example, virologist Scott Hensley and colleagues have generated a highly promising monovalent mRNA vaccine that completely matches the currently circulating strain of H5N1. So far, the vaccine produces great antibody responses in mice, but it still needs to be tested in ferrets, and then obviously, humans. There are also many other research groups working on both H5N1-specific and multivalent influenza virus vaccines directed against all known influenza virus subtypes.

There is no way to predict if and when H5N1 will evolve so it can pass easily between humans, although the probability for such a phenomenon is as real as the recent emergence of SARS-CoV-2. Considering that the mortality rate from H5N1 infection in humans is estimated to be higher than 50%* (compared to less than 1% from SARS-CoV-2), the consequences of a potential H5N1 pandemic would be a lot worse than those of the present pandemic. The fact that H5N1 already appears to transmit fairly well between non-human mammals as evidenced by an outbreak on a Spanish mink farm is highly concerning. The current H5N1 outbreak warrants increased surveillance and preparedness, and it further highlights the importance of a comprehensive One Health approach for detecting and controlling pandemic threats.

*This estimate by the World Health Organization likely does not take into account the total number of infections, which is probably much higher than we think. A higher number of total infections would decrease the rate of mortality.

[A big thank you to Joanna Pulit-Penaloza for the useful discussions, which helped me clarify some of the concepts in this post.]

Filed Under: Basic virology, Gertrud Rey Tagged With: avian influenza H5N1, bird flu, Flu, H5N1, human-to-human transmission, influenza, lower respiratory tract, pandemic, sialic acid, transmission, upper respiratory tract, vaccine

Avian influenza virus transmission experiments proceed, as they should

4 April 2019 by Vincent Racaniello

ferretThe decision by the US government to allow the resumption of experiments on aerosol transmission of avian influenza viruses has once again raised the hackles of some individuals who feel that the work is too risky. I disagree with their view on this work.

Science reports that ‘Controversial lab studies that modify bird flu viruses in ways that could make them more risky to humans will soon resume after being on hold for more than 4 years’. Denise Grady of the New York Times wrote that “Research that could make flu viruses more dangerous” are set to resume. Note that the experiments done in the Kawaoka and Fouchier laboratories that allow aersol transmission of avian H5N1 viruses among ferrets discussed here previously actually made the viruses much less pathogenic. This fact is ignored in all the discourse about the work. [Read more…] about Avian influenza virus transmission experiments proceed, as they should

Filed Under: Basic virology, Commentary Tagged With: aerosol transmission, avian influenza, ferret, fouchier, gain of function, H5N1, influenza, kawaoka, viral, virology, virus, viruses

TWiV 396: Influenza viruses with Peter Palese

3 July 2016 by Vincent Racaniello

TWiVVincent speaks with Peter Palese about his illustrious career in virology, from early work on neuraminidases to universal influenza virus vaccines, on episode #396 of the science show This Week in Virology.

You can find TWiV #396 at microbe.tv/twiv, or listen below.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV396.mp3″]

Click arrow to play
Download TWiV 396 (54 MB .mp3, 74 min)
Subscribe (free): iTunes, RSS, email

Filed Under: This Week in Virology Tagged With: aerosol transmission, ferret, Flu, gain of function, H5N1, influenza, influenza virus, neuraminidase, relenza, swine flu, tamiflu, universal vaccine, vaccine, viral, virology, virus, viruses

Moving beyond metagenomics to find the next pandemic virus

14 March 2016 by Vincent Racaniello

I was asked to write a commentary for the Proceedings of the National Academy of Sciences to accompany an article entitled SARS-like WIV1-CoV poised for human emergence. I’d like to explain why I wrote it and why I spent the last five paragraphs railing against regulating gain-of-function experiments.

Towards the end of 2014 the US government announced a pause of gain-of-function research involving research on influenza virus, SARS virus, and MERS virus that “may be reasonably anticipated to confer attributes to influenza, MERS, or SARS viruses such that the virus would have enhanced pathogenicity and/or transmissibility in mammals via the respiratory route.”

From the start I have opposed the gain-of-function pause. It’s a bad idea fostered by individuals who continue to believe, among other things, that influenza H5N1 virus adapted to transmit by aerosol among ferrets can also infect humans by the same route. Instead of stopping important research, a debate on the merits and risks of gain-of-function experiments should have been conducted while experiments were allowed to proceed.

Towards the end of last year a paper was published a paper on the potential of SARS-virus-like bat coronaviruses to cause human disease. The paper reawakened the debate on the risks and benefits of engineering viruses. Opponents of gain-of-function research began to make incorrect statements about this work. Richard Ebright said that ‘The only impact of this work is the creation, in a lab, of a new, non-natural risk”. Simon Wain-Hobson wrote that a novel virus was created that “grows remarkably well” in human cells; “if the virus escaped, nobody could predict the trajectory”. I have written extensively about why these are other similar statements ignore the value of the work. In my opinion these critics either did not read the paper, or if they did, did not understand it.

Several months later I was asked to write the commentary on a second paper examining the potential of SARS like viruses in bats to cause human disease. I agreed to write it because the science is excellent, the conclusions are important, and it would provide me with another venue for criticizing the gain-of-function pause.

In the PNAS paper, Menachery et al. describe a platform comprising metagenomics data, synthetic virology, transgenic mouse models, and monoclonal antibody therapy to assess the ability of SARS-CoV–like viruses to infect human cells and cause disease in mouse models. The results indicate that a bat SARS-like virus, WIV1-CoV, can infect human cells but is attenuated in mice. Additional changes in the WIV1-CoV genome are likely required to increase the pathogenesis of the virus for mice. The same experimental approaches could be used to examine the potential to infect humans of other animal viruses identified by metagenomics surveys. Unfortunately my commentary is behind a paywall, so for those who cannot read it, I’d like to quote from my final paragraphs on the gain-of-function issue:

The current government pause on these gain-of-function experiments was brought about in part by several vocal critics who feel that the risks of this work outweigh potential benefits. On multiple occasions these individuals have indicated that some of the SARS-CoV work discussed in the Menachery et al. article is of no merit. … These findings provide clear experimental paths for developing monoclonal antibodies and vaccines that could be used should another CoV begin to infect humans. The critics of gain-of-function experiments frequently cite apocalyptic scenarios involving the release of altered viruses and subsequent catastrophic effects on humans. Such statements represent personal opinions that are simply meant to scare the public and push us toward unneeded regulation. Virologists have been manipulating viruses for years—this author was the first to produce, 35 y ago, an infectious DNA clone of an animal virus—and no altered virus has gone on to cause an epidemic in humans. Although there have been recent lapses in high-containment biological facilities, none have resulted in harm, and work has gone on for years in many other facilities without incident. I understand that none of these arguments tell us what will happen in the future, but these are the data that we have to calculate risk, and it appears to be very low. As shown by Menacherry et al. in PNAS, the benefits are considerable.

A major goal of life science research is to improve human health, and prohibiting experiments because they may have some risk is contrary to this goal. Being overly cautious is not without its own risks, as we may not develop the advances needed to not only identify future pandemic viruses and develop methods to prevent and control disease, but to develop a basic understand- ing of pathogenesis that guides prevention. These are just some of the beneficial outcomes that we can predict. There are many examples of how science has progressed in areas that were never anticipated, the so-called serendipity of science. Examples abound, including the discovery of restriction enzymes that helped fuel the biotechnology revolution, and the development of the powerful CRISPR/Cas9 gene-editing technology from its obscure origins as a bacterial defense system.

Banning certain types of potentially risky experiments is short sighted and impedes the potential of science to improve human health. Rather than banning experiments, such as those described by Menachery et al., measures should be put in place to allow their safe conduct. In this way science’s full benefits for society can be realized, unfettered by artificial boundaries.

Filed Under: Basic virology, Commentary, Information Tagged With: aerosol transmission, benefits, coronavirus, ferret, gain of function, H5N1, influenza, MERS, metagenomics, moratorium, pathogenicity, pause, risks, SARS, viral, virology, virus, viruses

TWiV 377: Chicken with a side of Zika

21 February 2016 by Vincent Racaniello

TWiVOn episode #377 of the science show This Week in Virology, the TWiVniks review the past week’s findings on Zika virus and microcephaly, and reveal a chicken protein that provides insight on the restriction of transmission of avian influenza viruses to humans.

You can find TWiV #377 at microbe.tv/twiv, or you can listen below.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV377.mp3″]

Click arrow to play
Download TWiV 377 (70 MB .mp3, 95 min)
Subscribe (free): iTunes, RSS, email

Filed Under: This Week in Virology Tagged With: amniotic fluid, ANP32A, avian influenza, H5N1, host protein, host restriction, larvicide, microcephaly, ocular defects, pyriproxifen, RNA polymerase, semen, species restriction, TORCH, viral, virology, virus, viruses, zika virus, ZIKV

TWiV 336: Brought to you by the letters H, N, P, and Eye

10 May 2015 by Vincent Racaniello

On episode #336 of the science show This Week in Virology, the TWiVsters explore mutations in the interferon pathway associated with severe influenza in a child, outbreaks of avian influenza in North American poultry farms, Ebolavirus infection of the eye weeks after recovery, and Ebolavirus stability on surfaces and in fluids.

You can find TWiV #336 at www.microbe.tv/twiv.

Filed Under: This Week in Virology Tagged With: acute respiratory distress, avian influenza, ebolavirus, H5N1, H5N2, H5N8, high pathogenicity avian influenza, IFN, influenza, interferon, IRF7, poultry, severe influenza, uveitis, viral, virology, virus

  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Interim pages omitted …
  • Go to page 12
  • Go to Next Page »

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.