• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

genetic material

From a food blender to real-time fluorescent imaging

5 September 2012 by Vincent Racaniello

single phage infectionAlthough Avery, MacLeod, and McCarty showed in 1944 that nucleic acid was both necessary and sufficient for the transfer of bacterial genetic traits, protein was still suspected to be a critical component of viral heredity. Alfred Hershey and Martha Chase showed that this hypothesis was incorrect with a simple experiment involving the use of a food blender. The Hershey-Chase conclusion has since been upheld numerous times*, the most recent by a modern-day experiment using real-time fluorescence.

Hershey and Chase made preparations of the tailed bacteriophage T2 with the viral proteins labeled with radioactive sulfur, and the nucleic acids labeled with radioactive phosphorus. The virions were added to a bacterial host, and after a short period of time were sheared from the cell surface by agitation in a blender. After this treatment, the radioactive phosphorus, but not the radioactive sulfur, remained associated with bacterial cells. These infected cells went on to produce new virus particles, showing that DNA contained all the information needed to produce a bacteriophage.

In a modern validation of the Hershey-Chase experiment, bacteriophages are mixed with a cyanine dye which binds to the viral DNA (illustrated). Upon infection of the bacterial host, the phage DNA is injected into the cell together with the dye. In time the dye leaves the phage DNA and binds to the host genome. This process can be observed in real-time (as it happens) by fluorescence microscopy.

This technique was used to visualize single bacteriophages infecting an E. coli host cell. It takes about 5 minutes on average for 80% of bacteriophage lambda DNA to exit the capsid, with a range of 1-20 minutes.

These experiments do not simply provide a visual counterpart to the Hershey-Chase conclusion, but reveal additional insights into how viral DNA leaves the capsid. One interesting observation is that the amount of DNA that remains in the capsid apparently is not the sole determinant of how quickly ejection occurs. The amount of DNA ejected from the capsid does appear to regulate the dynamics of the process.

The kitchen blender experiment contrasts vividly with the complexity of real-time fluorescent imaging. Hershey and Chase did not have the technology to visualize phage DNA entering the host cell; they used what was available to them at the time. While improved technology is important for pushing research forward, simple experiments will always make important contributions to our understanding of science.

*The infectivity of cloned viral DNA is one validation of the Hershey-Chase experiment.

Hershey, AD, Chase, M. 1952. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol. 36:39-56. 

Van Valen, D., Wu, D., Chen, Y-J, Tuson, H, Wiggins, P, Phillips, R. 2012. A single-molecule Hershey-Chase experiment. Current Biol 22:1339-1343. 

Filed Under: Basic virology, Information Tagged With: bacteriophage, DNA, food blender, genetic material, Hershey-Chase, infection, phage, transformation, viral, virology, virus

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.