• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

dendritic cell

Early Immune Responses to Herpes Simplex Virus Type I Infection

6 May 2021 by Gertrud U. Rey

by Gertrud U. Rey

Herpes simplex viruses infect cells of the skin and mucous membranes, where they establish a lifelong persistent infection in sensory neurons. Sporadic reactivation and viral shedding may lead to painful oral and genital disease and a three to five-fold increased risk of HIV transmission. There is currently no vaccine to prevent infection with herpes simplex virus type 1 or type 2 (HSV-1 or HSV-2).

Until recently it was thought that initial interactions of HSV-1 with the immune system only involve Langerhans cells. Langerhans cells are skin-resident sentinel macrophages that detect microbial antigens, and they engulf, process, and present these antigens to T cells for downstream immune functions. However, a recent study suggests that early during infection, HSV-1 also interacts with a newly identified immune cell known as an epidermal conventional dendritic cell type 2 (Epi-cDC2). Like Langerhans cells, dendritic cells can swallow microbe-infected cells and present the microbial antigens to T helper cells, ultimately triggering the actions of cytotoxic T cells, which directly kill infected cells.

The study aimed to better define the role of Epi-cDC2s in early HSV-1 infection using ex vivo explants as a model system. The explants consisted of pieces of human inner foreskin that were mounted on specialized gelatin scaffolds to mimic the in vivo environment encountered by HSV-1 during infection. The authors exposed the explants to an HSV-1 virus in which a viral membrane protein was fused to a green fluorescent protein (GFP), allowing them to visually track a resulting infection using a fluorescence microscope. This method revealed that at 24 hours after exposure to the GFP-tagged HSV-1, both Langerhans cells and Epi-cDC2s contained the virus in their cytoplasm, suggesting that these cells either engulfed HSV-1-infected skin cells and/or were themselves infected by HSV-1.

To determine whether the presence of HSV-1 in the cytoplasm of Epi-cDC2s resulted from infection and replication and not just from engulfing infected skin cells, the authors first did the following. They exposed cell cultures of Epi-cDC2s to HSV-1. After six hours of this exposure, Epi-cDC2s contained about as much virus as did control Langerhans cells, which are known to be infected by HSV-1. However, at 18 hours, Epi-cDC2s contained significantly higher HSV-1 levels than Langerhans cells, suggesting increased entry/uptake of virus into Epi-cDC2s compared to Langerhans cells. Next, to assess whether HSV-1 was also replicating in the Epi-cDC2 cells, not just entering them, the authors treated the cells with a fluorescent antibody that binds ICP27, a viral protein needed for replication. A significantly greater portion of Epi-cDC2s than Langerhans cells expressed ICP27, suggesting that HSV-1 was replicating, and doing so more efficiently in Epi-cDC2s.

Viruses may enter a host cell by a variety of mechanisms. One common mechanism, called receptor-mediated endocytosis, involves the formation of cell membrane-derived vesicles. In one version of this process, which requires a low pH, viral binding to a cell surface receptor triggers the cellular membrane to fold inward and form a slightly acidic “endosome” around the virus. Another version of receptor-mediated endocytosis is not dependent on a low pH, but requires cholesterol molecules and the motor protein actin to form cell surface protrusions called “ruffles.” When the ruffles become large enough, they collapse back onto the membrane and form large fluid-filled vesicles encasing the virus. In both of these versions of receptor-mediated endocytosis, the resulting vesicles enter the cytoplasm, where they eventually release their contents. In yet another mechanism of entry, also independent of acidic pH, viruses may simply fuse with the plasma membrane and deliver their contents into the cytoplasm.

Although HSV-1 can enter cells by any of these pathways, its entry mechanism differs in different types of cells. To determine which pathway HSV-1 uses to enter Langerhans cells and Epi-cDC2s, the authors treated both types of cells with a drug that prevents acidification of endosomes. They then infected the cells with the GFP-tagged HSV-1 and measured infection by quantitating GFP with a fluorescence microscope. Increasing doses of the drug led to increased inhibition of infection of Langerhans cells, suggesting that these cells are infected with HSV-1 via a pH-dependent mechanism. In contrast, the drug did not affect infection of Epi-cDC2s, suggesting that HSV-1 does not require an acidic pH for entering Epi-cDC2s.

To determine whether HSV-1 entry into Epi-cDC2s occurred via actin and cholesterol-dependent endocytosis, the authors treated Epi-cDC2s with inhibitors of actin or cholesterol prior to infection. Both treatments led to significant reduction in GFP fluorescence inside the cells, suggesting that cholesterol and actin are both important mediators of HSV-1 entry into Epi-cDC2s.

Langerhans cells express a cell surface receptor called langerin, which mediates entry of HIV and influenza A. To see whether this receptor is also required for entry of HSV-1, the authors infected Langerhans cells with HSV-1 in the presence of an antibody that neutralizes langerin. This inhibition of langerin expression led to diminished infection of Langerhans cells, suggesting that langerin is required for HSV-1 entry into them. In contrast, inhibition of langerin on Epi-cDC2s had no effect on HSV-1 infection efficiency, suggesting that, even though Epi-cDC2s do express some langerin, this receptor is not required for HSV-1 entry of these cells.

HSV-1 and HSV-2 are of high public health concern, and a vaccine to prevent infection with these viruses is urgently needed. Immune control of HSV-1/-2 infection and resolution of genital herpes lesions requires the collective action of various types of T cells, which are likely primed by different dendritic cell subsets. Understanding the dynamics of the initial interactions of HSV-1 and HSV-2 with cells of the immune system may result in better strategies for HSV-1/-2 vaccines. The pathways described here have important implications in vaccine design and prevention of persistent infection of neuronal cells.

Filed Under: Basic virology, Gertrud Rey Tagged With: actin, cholesterol, dendritic cell, herpes, herpes simplex virus, herpes simplex virus 1, HSV-1, infection, Langerhans cell, macrophage, receptor-mediated endocytosis, replication

TWiV 568: Karolinska viral

6 October 2019 by Vincent Racaniello

In the second episode from the Karolinska Institute in Stockholm, Vincent speaks with Jan Albert, Petter Brodin, and Anna Smed-Sörensen about their work on enterovirus D68, systems immunology, and human pulmonary viral infection and inflammation.

Click arrow to play
Download TWiV 568 (58 MB .mp3, 95 min)
Subscribe (free): iTunes, Google Podcasts, RSS, email

Become a patron of TWiV!

Show notes at microbe.tv/twiv

Filed Under: This Week in Virology Tagged With: acute flaccid myelitis, dendritic cell, enterovirus D68, epidemiology, hantavirus, influenza virus, maternal antibodies, mononuclear phagocyte, newborn anti-viral antibodies, placenta, respiratory viral infection, systems immunology, viral, virology, virus, viruses

Lymphocytes after dark

16 November 2017 by Vincent Racaniello

B cell

When you are infected with a microbe, pieces of the pathogen are picked up by sentinel dendritic cells and brought to local lymph nodes. There the sentinels present their gifts to lymphocytes – B (pictured; image credit) and T cells – who then decide if they are foreign, in which case an immune response begins. These lymphocytes circulate throughout the body not continuously, but in a circadian manner – a 24 hour cycle.

[Read more…] about Lymphocytes after dark

Filed Under: Basic virology, Information Tagged With: circadian clock, dendritic cell, immunology, lymph node, lymphocyte, macrophage, sentinel cell, viral, virology, virus, viruses

TWiV 175: More than one way to skin a virus

18 March 2012 by Vincent Racaniello

On episode #175 of the podcast This Week in Virology, Vincent, Alan, and Matt discuss herpes simplex encephalitis in children with innate immune deficiency, and the local response to microneedle-based influenza skin immunization.

You can find TWiV #175 at www.microbe.tv/twiv.

Filed Under: This Week in Virology Tagged With: autosomal, dendritic cell, dominant, herpes simplex encephalitis, influenza, innate immunity, microneedle, recessive, skin immunization, trif, vaccine, viral, virology, virus

TWiV 157: Better innate than never

13 November 2011 by Vincent Racaniello

dendritic cellHosts: Vincent Racaniello, Rich Condit, Alan Dove, Dickson Despommier, Jeremy Luban, and Gabriel Victora

A large TWiV panel remembers Ralph Steinman, and considers a new innate sensor of retroviral capsids.

Photograph of a dendritic cell (green) interacting with T cells (cyan) near a blood vessel by Gabriel Victora.

Please help us by taking our listener survey.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV157.mp3″]

Click the arrow above to play, or right-click to download TWiV 157 (90 MB .mp3, 125 minutes).

Subscribe to TWiV (free) in iTunes , at the Zune Marketplace, by the RSS feed, by email, or listen on your mobile device with the Microbeworld app.

Links for this episode:

  • HG Khorana obituary
  • DC discovery: four seminal papers (one, two, three, four)
  • Ralph Steinman videos from Lasker Award
  • TRIM5 is an innate immune retroviral sensor (Nature)
  • TWiV on Facebook
  • Letters read on TWiV 157

Weekly Science Picks

Dickson – Eats, Shoots & Leaves by Lynne Truss
Rich – Battlestar Galactica
Alan – Coleman LED quad lantern
Gabriel – A History of Immunology by Arthur M. Silverstein
Jeremy – Principles of Virology by Flint, Enquist, Racaniello, Skalka
Vincent – Principles of Molecular Virology by AJ Cann

Listener Pick of the Week

David – Carl Sagan’s Pale Blue Dot (YouTube)

Send your virology questions and comments (email or mp3 file) to twiv@microbe.tv, or call them in to 908-312-0760. You can also post articles that you would like us to discuss at microbeworld.org and tag them with twiv.

Filed Under: This Week in Virology Tagged With: capsid, dendritic cell, innate immunity, innate sensor, ralph steinman, retrovirus, trim5, viral, virology, virus

Gut microbes influence defense against influenza

6 September 2011 by Vincent Racaniello

modelThe bacteria in our intestines outnumber by tenfold the 100 trillion cells that comprise the human body. This gut microbiota has many beneficial functions, including the production of vitamins and hormones, fermentation, regulation of gut development, and shaping intestinal immune responses. They also play a role in pathological conditions such as diabetes and obesity, and influence the immune functions of distal mucosal surfaces such as the lung. Examples include the amelioration of allergen-induced asthma by colonization of the stomach with Helicobacter pylori, and involvement of the gut microbiota in development of immune defenses against influenza virus infection.

When the gut microbiome of mice is altered by treatment with antibiotics, subsequent intranasal infection with influenza A virus leads to reduced antiviral antibody and T-cell responses. The antibiotic treatment does not cause a general immunodeficiency – the mice can respond normally to protein antigens.

The defective immune response to influenza virus in antibiotic treated mice can be rescued by treating the mice with compounds that stimulate the innate immune response – such as lipopolysaccharide, a bacterial product. These compounds rescue the immune defect when administered either intransally or rectally at the time of influenza virus infection. Apparently stimulating the innate immmune response in the gut is sufficient to correct an immune defect in the lung.

How might gut bacteria be important for immune responses to a lung infection? When influenza virus infects the lung, development of immune defenses depend upon a complex of several proteins called the inflammasome. This structure is needed for the production of cytokines that promote adaptive immune defenses: antibodies and T cells. These cytokines are also needed for the activity of dendritic cells, sentinels that sense a virus infection, and travel to the nearby lymph nodes to inform T cells that there is a problem.

Antibiotic treatment of mice impairs the influenza virus-induced production of inflammasome-dependent cytokines. These results are consistent with the finding that antibiotic-treated mice respond normally to infection with herpes simplex virus type 2 and Legionella pneumophila, two pathogens for which the inflammasome is not required for adaptive immune responses. Furthermore, microbe-mediated inflammasome activation is needed for migration of lung dendritic cells to lymph nodes. In antibiotic treated mice, lung dendritic cells fail to migrate to local lymph nodes. Hence T cells are not informed of the infection, leading to poor antibody and cellular responses.

These findings reveal a link between the gut microbial community and inflammasome-dependent activation of cytokines. How gut bacteria effect this process is not understood. One idea is that bacterial products stimulate white blood cells in the intestine to produce compounds that migrate to the lung and activate the inflammasome.

If you are wondering about the practical consequences of these findings, read the last paragraph of the paper:

Because antibiotic use is prevalent in the treatment of respiratory infections, our results imply a possible deleterious effect of such treatment in initiating proper immune responses to influenza virus. Conversely, it will be important to determine whether probiotic therapy can be explored for immune-stimulating effects during the flu season.

Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, & Iwasaki A (2011). Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proceedings of the National Academy of Sciences of the United States of America, 108 (13), 5354-9 PMID: 21402903

Filed Under: Basic virology, Information Tagged With: antibody, dendritic cell, gut microbiota, immune response, influenza, T cell, viral, virology, virus

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.