• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

d222g

TWiV #74: Influenza with Professor Adolfo Garcia-Sastre

21 March 2010 by Vincent Racaniello

Hosts: Vincent Racaniello and Adolfo Garcia-Sastre

Vincent speaks with Adolfo Garcia-Sastre talk about the origin, pathogenesis, and prevention of the 2009 pandemic influenza H1N1 virus.

This episode is sponsored by Data Robotics Inc. Use the promotion code VINCENT to receive $50 off a Drobo or $100 off a Drobo S.

Win a free Drobo S! Contest rules here.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV074.mp3″]

Click the arrow above to play, or right-click to download TWiV #74 (34 MB .mp3, 47 minutes)

Subscribe to TWiV (free) in iTunes , at the Zune Marketplace, by the RSS feed, or by email.

Links for this episode:

  • Influenza virus receptor specificity and disease
  • PB1-F2 expression by 2009 H1N1 strain does not increase virulence
  • Protection against 2009 H1N1 infection by immunization with older strains
  • Passage in eggs changes influenza receptor specificity
  • Association between D222G mutation and virulence

Send your virology questions and comments (email or mp3 file) to twiv@microbe.tv or leave voicemail at Skype: twivpodcast. You can also post articles that you would like us to discuss at microbeworld.org and tag them with twiv.

Filed Under: This Week in Virology Tagged With: d222g, d225G, garcia-sastre, H1N1, influenza, pandemic, swine flu, TWiV, vaccine, viral, virology, virulence, virus

The D225G change in 2009 H1N1 influenza virus

18 March 2010 by Vincent Racaniello

sialic-acid-2Last year a mutation in the HA gene of the 2009 H1N1 influenza virus was identified in isolates from patients with severe disease. At the time I concluded that the emergence of this change was not a concern. Recently the Norwegian Institute of Public Health reported that the mutation, which causes a change from the amino acid aspartic acid to glycine at position 225 of the viral HA protein (D225G), has been identified in 11 of 61 cases (18%) of severe or fatal influenza, but not in any of 205 mild cases. Have these observations changed my view of the importance of this mutation?

The cell receptor for influenza A virus strains is sialic acid. Human influenza A strains bind preferentially to sialic acids linked to galactose by an alpha(2,6) bond, while avian and equine strains prefer alpha(2,3) linked sialic acids (pictured). Alpha(2,6) linked sialic acids are dominant on epithelial cells in the human nasal mucosa, paranasal sinuses, pharynx, trachea, and bronchi. Alpha(2,3) linked sialic acids are found on nonciliated bronchiolar cells at the junction between the respiratory bronchiole and alveolus, and on type II cells lining the alveolar wall.

The 2009 swine-origin H1N1 influenza virus is known to bind both alpha(2,3) and alpha(2,6) linked sialic acids. This is consistent with the ability of the virus to cause lower respiratory tract disease. The D225G change might be expected to increase affinity for alpha(2,3) linked sialic acids. However, it is not known if increased binding affinity correlates with higher infectivity and pathogenicity. It’s equally likely that high affinity binding might restrict the movement of the virus in lung tissues by causing retention of the virus on nonsusceptible cells.

One view of the D225G mutation is that it is spreading globally and causing more severe disease. However there is no evidence in support of this hypothesis. According to WHO, viruses with the D225G change have been found in 20 countries since April 2009, but there has been no temporal or geographic clustering. As of January, the HA change has been identified in 52 sequences out of more than 2700. Furthermore, the authors of the Norwegian study write, “Our observations are consistent with an epidemiological pattern where the D225G substitution is absent or infrequent in circulating viruses, with the mutation arising sporadically in single cases where it may have contributed to severity of infection”.

One explanation for the sporadic emergence of influenza viruses with the D225G change is that they are selected for in the lower respiratory tract where alpha(2,3) sialic acids are more abundant than in the upper tract. Such selection might be facilitated in individuals with compromised lung function (e.g. asthmatics, smokers) or suboptimal immune responses, in whom the virus more readily reaches the lung. One way to address this hypothesis would be to compare the HA at amino acid 225 of viral isolates obtained early in infection, from the upper tract, with isolates obtained from the lower tract late in disease. However such paired isolates have not yet been obtained. But whether the presence of viruses with D225G increases viral virulence is unknown. Many H1N1 isolates from cases of fatal or severe disease do not contain this amino acid change.

There is an alternative explanation for the isolation of at least some influenza viruses with the D225G change: it is selected by propagation in embryonated chicken eggs. This selection occurs because cells of the allantoic cavity of chicken eggs have only alpha(2,3) linked sialic acids. A change in receptor specificity does not occur when viruses are propagated in MDCK (canine kidney) cells, which possess sialic acids with both alpha(2,3) and alpha(2,6) linkages. Consistent with this hypothesis, WHO reports (pdf) that the D225G substitution in 14 virus isolates occurred after growth in the laboratory.

Studies on the binding of influenza viruses to glycan arrays have shown that attachment is influenced not only by the linkage to the next sugar, but the type of sialic acid as well as the rest of the carbohydrate chain. The distribution of all the possible sialic acid containing sugars in the respiratory tract is unknown, as is the specific molecules that can support productive viral infection. The view that HA preferentially binds to either alpha(2,3) or alpha(2,6) linked sialic acids is likely to be overly simplistic: another casualty of reductionism.

Kilander A, Rykkvin R, Dudman SG, & Hungnes O (2010). Observed association between the HA1 mutation D222G in the 2009 pandemic influenza A(H1N1) virus and severe clinical outcome, Norway 2009-2010. Euro surveillance : bulletin europeen sur les maladies transmissibles = European communicable disease bulletin, 15 (9) PMID: 20214869

Takemae N, Ruttanapumma R, Parchariyanon S, Yoneyama S, Hayashi T, Hiramatsu H, Sriwilaijaroen N, Uchida Y, Kondo S, Yagi H, Kato K, Suzuki Y, & Saito T (2010). Alterations in receptor-binding properties of swine influenza viruses of the H1 subtype after isolation in embryonated chicken eggs. The Journal of general virology, 91 (Pt 4), 938-48 PMID: 20007353

Garcia-Sastre, A. (2010). Influenza Virus Receptor Specificity. Disease and Transmission American Journal Of Pathology DOI: 10.2353/ajpath.2010.100066

Filed Under: Information Tagged With: d222g, d225G, H1N1, influenza, pandemic, receptor, sialic acid, swine flu, viral, virology, virulence, virus

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.