• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

cucumber mosaic virus

TWiV 469: Mycovirus stuffed potatoes

26 November 2017 by Vincent Racaniello

The TWiV hosts discuss a plant virus that infects a fungus, and whether you need to work insane hours to succeed in science.

Click arrow to play
Download TWiV 469 (66 MB .mp3, 108 min)
Subscribe (free): iTunes, RSS, email

Become a patron of TWiV!

Show notes at microbe.tv/twiv

Filed Under: This Week in Virology Tagged With: cross-Kingdom, cucumber mosaic virus, dsRNA, fungus, mycovirus, phytopathogenic, plant virus, potato, success in science, transmission, viral, virology, virus, viruses

TWiV 463: We haven’t meth but these names ring Nobel

15 October 2017 by Vincent Racaniello

The TWiViridae review the 2017 Nobel Prizes for cryoEM and circadian rhythms, and discuss modulation of plant virus replication by RNA methylation.

Click arrow to play
Download TWiV 463 (63 MB .mp3, 104 min)
Subscribe (free): iTunes, RSS, email

Become a patron of TWiV!

Show notes at microbe.tv/twiv

Filed Under: This Week in Virology Tagged With: alfalfa mosaic virus, Arabidopsis thaliana, circadian rhythm, clock, cryo-electron microscopy, cryoEM, cucumber mosaic virus, N6-methyladenosine, Nobel Prize, RNA methylation, Seymour Benzer, viral, virology, virus, viruses

Have a methyl with your viral RNA

12 October 2017 by Vincent Racaniello

N6-MethyladenosineChemical modification of RNA by the addition of methyl groups is known to alter gene expression without changing the nucleotide sequence. The addition of a methyl group to adenosine has been found to regulate gene expression of animal viruses, and most recently of plant viruses.

The illustration shows a methyl (CH3-) group added to the nitrogen  that is attached to the #6 carbon of the purine base adenine. The entire molecule, with the ribose, is called N6-methyladenosine (m6A). Methylation of adenosine is carried out by enzymes that bind the RNA in the cell cytoplasm.

The m6A modification is found in multiple RNAs of most eukaryotes. It has also been found in the genome of RNA animal viruses. The modification is added to RNAs by a multi-protein enzyme complex, and is removed by demethylases. Silencing of the methylases decreases HIV-1 replication, while depletion of demethylases has the opposite effect. The replication of other viruses, including hepatitis C virus and Zika virus, is also regulated by m6A modification, but the details differ. For example, m6A negatively affects the replication of the flaviviruses hepatitis C virus and Zika virus.

Methylation of adenosine has been recently shown to modulate the replication of plant viruses. The RNA genomes of alfalfa mosaic virus (AMV) and cucumber mosaic virus (CMV) were found to contain m6A. An m6A demethylase was identified in Arabidopsis thaliana, a small flowering plant commonly used in research. This demethylase protein bound the capsid protein of AMV but not of CMV. Elimination of the demethylase from Arabidopsis reduced the replication of AMV but not CMV. These results show that m6A methylation negatively regulates the replication of AMV. Binding of the AMV capsid protein to the m6A demethylase might be a mechanism for ensuring that the enzyme demethylates viral RNA, allowing for efficient viral replication.

While it is clear that m6A regulates the replication of RNA viruses, the mechanisms involved are not well understood. Methylation of adenosine is likely to affect multiple functions, including the structure, celllular localization, splicing, stability, and translation of viral RNA (link to review). As m6A is also found in cellular RNAs, studies of its effect on viral processes is likely to provide insight into its role in cellular biology.

Filed Under: Basic virology, Information Tagged With: alfalfa mosaic virus, Arabidopsis, cucumber mosaic virus, demethylase, gene expression, HIV-1, methylase, methylation, N6-methyladenosine, plant virus, RNA, viral, virology, virus, viruses

TWiV 402: The plight of the bumblebee

14 August 2016 by Vincent Racaniello

Polio returns to Nigeria, Zika virus spreads in Miami, and virus infection of plants attracts bumblebees for pollination, from the virus gentlepeople at TWiV.

You can find TWiV #400 at microbe.tv/twiv, or listen below.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV402.mp3″]

Click arrow to play
Download TWiV 402 (85 MB .mp3, 118 min)
Subscribe (free): iTunes, RSS, email

Become a patron of TWiV!

Filed Under: Uncategorized Tagged With: bumblebee, cmv, cucumber mosaic virus, microcephaly, nigeria, polio, pollination, tomato, vaccine, viral, virology, virus, viruses, volatile organic compounds, zika virus

Non-fatal attraction

11 August 2016 by Vincent Racaniello

bee attractionVolatile organic compounds that are emitted by plants – which play important roles in attracting insects – can be altered by virus infection. Infection by cucumber mosaic virus (CMV) increases the emissions that attract aphids, but the virus-altered plant juices are not so tasty, so the insect quickly leaves to spread virus to other plants (listen to TWiV #70 for a full discussion of this finding). Plant pollinators can also respond to plant virus-induced volatile compounds (paper link)

Cucumber mosaic virus is a (+) strand RNA virus that is a pathogen of tomato plants. The virus is spread by aphids, and bumblebees increase fruit yield by buzz-pollination (tomato plants are self-pollinating but bumblebees cause increased seed production).

To study the attraction of bumblebees to tomato plants, the authors encased single tomato plants in a tower topped with a screen and a small cup of 30% sucrose (shown in photo: credit). This arrangement allowed volatile compounds to waft through the screen above the plant.

Bumblebees clearly preferred to visit the CMV-infected over the uninfected plants. They also shunned plants infected with a mutant of CMV that cannot antagonize the RNA interference system of the plant – a major defense against viruses. The results suggest that CMV somehow alters plant produced volatile compounds to attract bumblebee pollinators, and that production of these compounds is regulated by microRNAs.

These findings – that CMV infected plants attract bees via the production of volatiles under the control of microRNAs – were confirmed using Arabidopsis, a model plant which can be genetically manipulated.

Chemical analysis of the volatiles produced by infected and uninfected tomato plants revealed that virus infection reduced the levels of two terpenoids, 2-carene and beta-phellandrene. These compounds are known to repel bumblebees, leading to the suggestion that their reduction may explain why bees prefer infected plants.

Is attraction of bumblebees by viral infection random, or does it have a purpose? CMV infection of tomato plants decreases seed production, an effect that is reversed when bumblebees are attracted to the plants and pollinate them.

The results show that CMV infection of tomato plants causes the emission of volatile compounds that attract pollinating bumblebees, which negate the inhibition of seed production by infection.

Bumblebees do not transmit CMV, so how did this non-fatal attraction come about? One can imagine that at one time CMV infection of plants did not attract bumblebees, and that infection severely depressed plant production. Then a random viral mutant arose that could induce the proper volatiles to attract bumblebees. This change provided a selective advantage because plant seed production was restored by bumblebee pollination. This is called a ‘payback’ hypothesis: the virus has a place to replicate, and the plant lives on due to virus-induced volatile compounds.

I have a bit of trouble with this payback idea, because at the base of it are human-like intentions. Why do we assume that what drives evolution are forces that make sense to us? The plant-centric view is that it was not a CMV mutant, but a plant mutant that arose, which could make the proper bumblebee attractants upon CMV infection. The selective force to maintain such a plant is very clear and involves no anthropocentric ‘payback’.

Whatever the origin of this non-fatal attraction, it merits further study, not only for developing better pollination methods, but for understanding the viral-host symbiosis.

Filed Under: Basic virology, Information Tagged With: bumblebee, cmv, cucumber mosaic virus, pollination, symbiosis, terpene, tomato plant, viral, virology, virus, viruses, volatile organic compound

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.