• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

congenital zika syndrome

Zika virus has always been neurotropic

2 November 2017 by Vincent Racaniello

Third trimester embryonic mouse brains

Written with Amy Rosenfeld, Ph.D.

Zika virus has been infecting humans since at least the 1950s (and probably earlier), but epidemics of infection have only been observed in the past ten years and congenital Zika syndrome in the last two. Two hypotheses emerged to explain this new pattern of disease: evolution of the virus, or random introduction into large, immunologically naive populations. Results from our laboratory show that one component of these disease patterns – neurotropism, the ability to infect cells of the nervous system – has always been a feature of Zika virus.

If evolution has selected for Zika viruses that cause epidemics and congenital neurological disease, there are many steps in the infection pathway that could be affected. Let’s focus on the ability of Zika virus infection during pregnancy to cause microcephaly. Mutations that affect multiple stages of infection might be responsible. These could include any or all of the following:

  • Mutations that increase viremia in the human host, increasing the likelihood that virus will be captured by a mosquito taking a blood meal.
  • Mutations that increase viral replication in the mosquito vector.
  • Mutations that increase the ability of the virus to cross the placenta.
  • Mutations that allow efficient replication in the fetus.
  • Mutations that promote virus entry of the nervous system (neuroinvasion).
  • Mutations that enhance replication in neural cells (neurotropism).

This list is by no means exhaustive. The point is that no small animal model is likely to capture all of these steps. For example, no mouse model of Zika virus infection has so far lead to the development of microcephalic offspring. Therefore testing whether any of the the mutations observed in different Zika virus isolates are responsible for new disease patterns is likely impossible.

We have chosen to look at the question of how Zika virus disease has changed by looking at a very specific part of the replication cycle: growth of the virus in fetal brain, specifically in organtypic brain slice cultures. Here’s how it works: we remove the developing embryos from pregnant mice during the first, second or third trimesters of development (see photo). The fetal brain is removed, sliced (slices are about 300 nm thick), are placed into culture medium. The slices live up to 8 days, during which time brain development continues. The Vallee laboratory here at Columbia has used a similar system utilizing rats to study the genetic basis of microcephaly.

Next, we infect the embryonic brain slices with different isolates of Zika virus from 1947 to 2016, from Africa, Asia, South America, and Puerto Rico. All of the isolates replicated in brain slice cultures from the first and second trimesters of development. These observations show that Zika virus has been neurotropic since at least 1947. Similar observations have been made with the 1947 isolate using human neurospheres, organoids, and fetal organotypic brain slice cultures.

The incidence of microcephaly is greatly reduced when mothers are infected during the third trimester of development. Consistent with this observation, we found that organotypic brain slice cultures from the third trimester of mouse development support the replication of only two of seven Zika virus isolates examined – the original 1947 isolate from Uganda, and 2016 isolate from Honduras. Furthermore, these viruses replicate in different cells of the third trimester embryonic brain compared with second trimester brain. We are interesting in identifying the changes in the virus responsible for these differences.

Our approach asks only whether different Zika virus isolates can infect brain cells when the virus is placed directly on these cells. We cannot make any conclusions about the ability of the virus to invade the brain from the blood (neuroinvasion), or any of the other steps in infection listed above.

Our experimental system also reveals how Zika virus infection of the developing brain might lead to microcephaly, a topic that we’ll explore next week.

Filed Under: Basic virology, Information Tagged With: congenital zika syndrome, flavivirus, microcephaly, neuroinvasion, neurotropism, organotypic brain slice culture, viral, virology, virus, zika virus

TWiV 380: Viruses visible in le microscope photonique

13 March 2016 by Vincent Racaniello

TWiVOn episode #380 of the science show This Week in Virology, the TWiVeroos deliver the weekly Zika Report, then talk about a cryoEM structure of a plant virus that reveals how the RNA genome is packaged in the capsid, and MIMIVIRE, a CRISPR-like defense system in giant eukaryotic viruses.

You can find TWiV at microbe.tv/twiv, or you can listen below.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV380.mp3″]

Click arrow to play
Download TWiV 380 (80 MB .mp3, 110 min)
Subscribe (free): iTunes, RSS, email

Filed Under: This Week in Virology Tagged With: amoeba, birth defects, capsid, central nervous system, congenital zika syndrome, cowpea mosaic virus, CRISPR/Cas, cryoEM, genome packaging, Guillain-Barré syndrome, intrinsic defense, meningoencephalitis, microcephaly, MIMIVIRE, mimivirus, myelitis, viral, virology, viruria, virus, viruses, zika virus

Congenital Zika Syndrome

8 March 2016 by Vincent Racaniello

FlavivirusData from several clinical studies in Brazil establish a strong link between infection of pregnant women with Zika virus and a variety of birth defects collectively called congenital Zika syndrome.

In the latest study conducted in Rio de Janeiro, the authors enrolled 88 pregnant women who had a rash in the previous 5 days. Of the 88 subjects, 72 tested positive for Zika virus by PCR. Fetal ultrasound was performed in 42 of the Zika virus positive women, and in all the Zika virus negative women.

The results are convincing: fetal abnormalities were detected in 12 of the 42 Zika virus positive women (29%) and in none of the Zika virus negative women.

The abnormalities include fetal death (2), microcephaly (5), ventricular calcification or other central nervous system lesions (7), and abnormal amniotic fluid volume or cerebral or umbilical artery flow (7). These observations show that Zika virus infection may lead to birth defects other than microcephaly.

The infections of these pregnant women with Zika virus took place throughout pregnancy, from week 8 to week 35. This window of susceptibility is in contrast to rubella virus which is more likely to cause birth defects when infection occurs in the first trimester.

Not all Zika virus infections seem to cause birth defects – 29% in this study. If this number holds outside of Rio de Janeiro, then birth defects should also be observed in other countries with high rates of infection. Only 20% of Zika virus infections are symptomatic, and it will be important to determine if these also lead to congenital Zika syndrome.

The increase in microcephaly associated with Zika virus infection was first noted in the northeast of Brazil. This study was done with women who live in Rio de Janeiro, in the southeast of Brazil, showing that the association is not geographically limited.

It has been suggested that fetal defects might be partly due to the presence of antibodies to dengue virus that cross-react with Zika virus and cause immune-mediated enhancement of disease. Thirty-one percent of the Zika virus positive women in this study were also positive for antibodies to dengue virus, but the paper does not report how these correlate with fetal defects.

These findings, together with results of previous studies showing recovery of the entire Zika virus genome from amniotic fluid or from fetal brain, demonstrate that this fast spreading and newly emerging virus infection is clearly a threat to the developing fetus.

We should not be surprised that a virus that had until recently only infected several thousand individuals, and which we believed caused a mild, self-limiting rash, suddenly is found to be extremely dangerous to the developing fetus. The potential for fetal damage was likely always present, but unobserved until the virus was introduced into a large population of susceptible individuals and hundreds of thousands of individuals were infected. The lesson to be learned, often easily forgotten, is that we should always expect more from viruses than we initially observe. Such was certainly the case for HIV-1; immunodeficiency was only the tip of the clinical syndrome caused by infection.

Given the pace at which Zika virus is racing through susceptible humans, it is likely to generate enough population immunity in the next five years to curtail this outbreak. However as susceptible individuals are born and accumulate, regular outbreaks will likely occur. Similarly, outbreaks of rubella virus in the US occurred every 5-6 years in the pre-vaccine era.

Not only do rubella and Zika viruses cause similar fetal and placental abnormalities, in the mother they both lead to rash, joint pain, skin itching, and lymphadenopathy without high fever.

Hopefully the similarities between rubella virus and Zika virus will stop there: it took nearly 30 years to develop a rubella virus vaccine after the discovery that infection caused birth defects.

 

Filed Under: Basic virology, Information Tagged With: Brazil, congenital zika syndrome, fetal, flavivirus, microcephaly, mosquito, outbreak, rubella virus, viral, virology, virus, viruses, Zika

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.