• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

circovirus

TWiV 155: XXII Brazilian National Virology Meeting

30 October 2011 by Vincent Racaniello

sbv_logoenv2011Hosts: Vincent Racaniello, Grant McFadden, Eurico de Arruda Neto, Paulo Eduardo Brandão, Francisco Murilo Zerbini, and Janice Reis Ciacci Zanella

Vincent, Grant, Eurico, Paulo, Francisco and Janice discuss their work on bocavirus, infectious bronchitis virus, begomoviruses, and circoviruses at the Brazilian Virology Society meeting in Atibaia, São Paulo, Brazil.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV155.mp3″]

Click the arrow above to play, or right-click to download TWiV 155 (56 MB .mp3, 93 minutes).

Subscribe to TWiV (free) in iTunes , at the Zune Marketplace, by the RSS feed, by email, or listen on your mobile device with the Microbeworld app.

Links for this episode:

  • Program of the XXII Brazilian Virology Meeting (pdf)
  • Sociedade Brasiliera de Virologia
  • Journal of the Brazilian Society for Virology
  • Photographs from the meeting at TWiV Facebook or Picasa
  • TWiV on Facebook
  • Letters read on TWiV 155
  • Video of this episode – view below or download 640×480 .mp4 file

Weekly Science Picks

Vincent – AAM Colloquium Program
Grant – The Disappearing Spoon by Sam Kean

Listener Pick of the Week

Antonio – 2011 Nobel Laureates Lectures at Lindau

Send your virology questions and comments (email or mp3 file) to twiv@microbe.tv, or call them in to 908-312-0760. You can also post articles that you would like us to discuss at microbeworld.org and tag them with twiv.

Filed Under: This Week in Virology Tagged With: begamovirus, bocavirus, Brazil, brazilian virology society, circovirus, coronavirus, infectious bronchitis virus, viral, virology, virus

TWiV 114: Ten out of ’10

2 January 2011 by Vincent Racaniello

vaccinia plaqueHosts: Vincent Racaniello, Alan Dove, and Rich Condit

On episode #114 of the podcast This Week in Virology, Vincent, Alan, and Rich revisit ten compelling virology stories of 2010.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV114.mp3″]

Click the arrow above to play, or right-click to download TWiV #114 (64 MB .mp3, 88 minutes).

Subscribe to TWiV (free) in iTunes , at the Zune Marketplace, by the RSS feed, or by email, or listen on your mobile device with Stitcher Radio.

Ten virology stories of 2010:

  1. XMRV, CFS, and prostate cancer (TWiV 113, 99, 98, 94, 89, 76, 70, 65)
  2. The ongoing saga of polio eradication (TWiV 110, 79)
  3. Viruses interact with the miRNA/siRNA system (TWiV 108, 72)
  4. Endogenous viruses – retro and beyond (TWiV 105, 91, 88, 65)
  5. Dengue virus progress and new outbreak (TWiV 111, 95, 82)
  6. Colony collapse disorder (TWiV 104)
  7. David Baltimore (TWiV 100)
  8. Ode to a plaque (TWiV 68)
  9. Vaccine contamination with circovirus (TWiV 86, 77, 75)
  10. Universal influenza vaccines (TWiV 107)

Weekly Science Picks

Rich – Elementary schoolchildren publish a science paper (original article and editorial with video) – thanks Kathy!
Alan – White-nose syndrome blog
Vincent – Headway, headlines and healthy skepticism

Send your virology questions and comments (email or mp3 file) to twiv@microbe.tv or leave voicemail at Skype: twivpodcast. You can also post articles that you would like us to discuss at microbeworld.org and tag them with twiv.

Filed Under: This Week in Virology Tagged With: baltimore, cancer, CFS, circovirus, david, Dengue, endogenous, influenza, miRNA, plaque, polio, prostate, retrovirus, siRNA, vaccine, viral, virology, virus, xmrv

Unexpected endogenous viruses

10 December 2010 by Vincent Racaniello

circovirus parvovirus genomeDuring the replication of retroviruses, a double-stranded DNA copy of the viral RNA genome is synthesized by reverse transcription and integrated into the genomes of the infected cell. When retroviral DNA is integrated into the DNA of germ line cells, it is passed on to future generations in Mendelian fashion as an endogenous provirus. Until very recently, retroviruses were the only known endogenous viruses. This honor has now been extended to other RNA viruses, and to circoviruses and parvoviruses, which possess single-stranded DNA genomes. Such integration events constitute a fossil record from which it is possible to determine the age of viruses.

The first non-retroviral endogenous virus described was bornavirus, a virus with a negative-stranded RNA genome. Bornaviral sequences were found in the genomes of humans, non-human primates, rodents, and elephants. Phylogenetic analyses revealed that these sequences entered the primate genome over 40 million years ago. Endogenous filovirus (ebolavirus, marburgvirus) sequences were subsequently identified in the genomes of bats, rodents, shrews, tenrecs and marsupials. Based on these analyses it was estimated that filoviruses are at least tens of millions of years old. The presence of endogenous bornavirus and filovirus sequences were subsequently confirmed and extended to 19 different vertebrate species. Endogenous hepadnaviruses probably entered the genome of the zebra finch 19 million years ago.

Recent additions to the endogenous virus catalog are the circoviruses and parvoviruses. The genome of circoviruses are composed of single-stranded DNA, while those of parvoviruses are linear single-stranded DNAs with base-paired ends (figure). Phylogenetic analyses of these endogenous viral sequences reveal that both virus families are 40 to 50 million years old. Examination of insect genomes has revealed endogenous viral sequences from members of the Bunyaviridae, Rhabdoviridae, Orthomyxoviridae, Reoviridae, and Flaviviridae.

With the exception of retroviruses, these endogenous viral sequences have no role in viral replication – they are accidentally integrated into host DNA. Such sequences are highly mutated and typically comprise only fragments of the viral genome, and therefore cannot give rise to infectious virus. Whether these sequences confer any biological advantage to the host is an interesting question. It is possible that some of the endogenous viral sequences are copied into RNA, or translated into protein, and could have consequences for the host. For example, it has been suggested that synthesis of the bornaviral N protein from endogenous sequences might render the host resistant to infection with bornaviruses.

How are non-retroviral genomes integrated into the host DNA? For viruses with an RNA genome, the nucleic acid must enter the nucleus (perhaps accidentally for viruses without a nuclear phase) and be converted to a DNA copy by reverse transcriptase encoded by endogenous retroviruses. Hepadnaviruses encode a reverse transcriptase which produces the genomic DNA from an RNA template. In all cases, recombination could lead to integration of viral DNA into the host chromosome.

Almost half of the human genome is made up of mobile genetic elements, which includes endogenous proviruses and other sequences derived from retroviruses such as retrotransposons, retroposons, and processed pseudogenes. It seems likely that even more diverse viral sequences lurk in cellular genomes, awaiting discovery.

Horie M, Honda T, Suzuki Y, Kobayashi Y, Daito T, Oshida T, Ikuta K, Jern P, Gojobori T, Coffin JM, & Tomonaga K (2010). Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature, 463 (7277), 84-7 PMID: 20054395

Taylor DJ, Leach RW, & Bruenn J (2010). Filoviruses are ancient and integrated into mammalian genomes. BMC evolutionary biology, 10 PMID: 20569424

Belyi VA, Levine AJ, & Skalka AM (2010). Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes. PLoS pathogens, 6 (7) PMID: 20686665

Gilbert C, & Feschotte C (2010). Genomic fossils calibrate the long-term evolution of hepadnaviruses. PLoS biology, 8 (9) PMID: 20927357

Katzourakis A, & Gifford RJ (2010). Endogenous viral elements in animal genomes. PLoS genetics, 6 (11) PMID: 21124940

Belyi VA, Levine AJ, & Skalka AM (2010). Sequences from ancestral single-stranded DNA viruses in vertebrate genomes: the parvoviridae and circoviridae are more than 40 to 50 million years old. Journal of virology, 84 (23), 12458-62 PMID: 20861255

Filed Under: Basic virology, Information Tagged With: circovirus, DNA, endogenous, filovirus, genome, parvovirus, retrovirus, viral, virology, virus

TWiV 86: Dark matter with Dr. Eric Delwart

13 June 2010 by Vincent Racaniello

Hosts: Vincent Racaniello, Rich Condit, and Eric Delwart

In episode #86 of the podcast This Week in Virology, Vincent and Rich travel to the Blood Systems Research Institute in San Francisco to speak with Eric Delwart about his work on virus discovery.

This episode is sponsored by Data Robotics Inc. Use the promotion code TWIVPOD to receive $75-$500 off a Drobo.

To enter a drawing to receive 50% off the manufacturers suggested retail price of a Drobo S or FS at drobostore.com, fill out the questionnaire here.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV086.mp3″]

Click the arrow above to play, or right-click to download TWiV #86 (59 MB .mp3, 81 minutes)

Subscribe to TWiV (free) in iTunes , at the Zune Marketplace, by the RSS feed, or by email, or listen on your mobile device with Stitcher Radio.

Links for this episode:

  • List of Dr. Delwart’s open-access journal articles (pdf) – to find each one, type PMID # into PubMed
  • CDC says don’t give rotavirus vaccines to infants with SCID
  • The Brighton Collaboration
  • Product sheet for RotaTeq (pdf – thanks, Sheldon!)
  • Letters read on TWiV 86

Weekly Science Picks

Rich – Google Crisis Response – Gulf of Mexico Oil Spill
Vincent
– HHMI resources for teachers and students (thanks, Jim!)
Eric – Vaccine by Arthur Allen

Send your virology questions and comments (email or mp3 file) to twiv@microbe.tv or leave voicemail at Skype: twivpodcast. You can also post articles that you would like us to discuss at microbeworld.org and tag them with twiv.

Filed Under: This Week in Virology Tagged With: circovirus, deep sequencing, delwart, HCV, HIV, massively parallel sequencing, rotavirus, viral, virology, virus

A plant virus that switched to vertebrates

26 April 2010 by Vincent Racaniello

Circovirus genomeViruses can be transmitted to completely new host species that they have not previously infected. Usually host defenses stop the infection before any replication and adaptation can take place. On rare occasions, a novel population of viruses arises in the new host. These interspecies infections can sometimes be deduced by sequence analyses, providing a glimpse of the amazing and unpredictable paths of virus evolution. One example is a plant virus that switched hosts and infected vertebrates.

Circoviruses infect vertebrates and have small, circular, single-stranded DNA genomes. Nanoviruses have the same genome structure, but infect plants. The genes encoding one of the viral proteins – called the Rep protein – appear to be hybrids, and share significant sequence similarity. They also exhibit homology with a protein encoded by caliciviruses, which are RNA viruses that infect many different vertebrates.

Analysis of the viral DNA sequences suggests that two remarkable events occurred during the evolution of circoviruses and nanoviruses. Not long ago, a nanovirus was transmitted from a plant to a vertebrate. This event might have occurred when a vertebrate fed on an infected plant. The virus adapted to vertebrates, and the circovirus family was established. After the host switch from plants to vertebrates, recombination took place between the circovirus and a vertebrate calicivirus. A reverse transcriptase probably converted the circovirus RNA genome to DNA to allow recombination to occur.

Similar interspecies transmission events have lead to outbreaks of human disease. One notable example is the transfer of simian immunodeficiency virus-1 from chimpanzees to humans. This host switch event, which is believe to have occurred in the early part of the 20th century, lead to the current AIDS pandemic.

Gibbs, M. (1999). Evidence that a plant virus switched hosts to infect a vertebrate and then recombined with a vertebrate-infecting virus Proceedings of the National Academy of Sciences, 96 (14), 8022-8027 DOI: 10.1073/pnas.96.14.8022

Filed Under: Basic virology, Information Tagged With: calicivirus, circovirus, evolution, host switch, nanovirus, recombination, viral, virology, virus

TWiV 77: Non-nuclear proliferation

11 April 2010 by Vincent Racaniello

Hosts: Vincent Racaniello, Alan Dove, and Rich Condit

Vincent, Alan, and Rich revisit circovirus contamination of Rotarix, then discuss poxvirus-like replication of mimivirus in the cell cytoplasm, and whether seasonal influenza immunization increases the risk of infection with the 2009 H1N1 pandemic virus.

This episode is sponsored by Data Robotics Inc. Use the promotion code TWIVPOD to receive $50 off a Drobo or $100 off a Drobo S.

Win a free Drobo S! Contest rules here.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV077.mp3″]

Click the arrow above to play, or right-click to download TWiV #77 (60 MB .mp3, 83 minutes)

Subscribe to TWiV (free) in iTunes , at the Zune Marketplace, by the RSS feed, or by email.

Links for this episode:

  • Contamination of Rotarix vaccine with porcine circovirus 1 DNA
  • Do you want to know what is in your vaccines? Take the poll
  • Mimivirus replicates in the cell cytoplasm like poxviruses
  • mRNA capping and virus evolution
  • Association between the 2008-09 seasonal influenza vaccine and pandemic H1N1 illness (commentary)
  • Doane paper goes viral
  • Energetics of genome ejection from bacteriophage (thanks Gary!)
  • Five strategies for behavioral adaptation to pathogens and parasites (excerpt; thanks Wladimir)
  • Letters read on TWiV 77

Weekly Science Picks

Rich The Way We Work by David Macaulay
Alan DimDim
Vincent Polio: An American Story by David Oshinsky

Send your virology questions and comments (email or mp3 file) to twiv@microbe.tv or leave voicemail at Skype: twivpodcast. You can also post articles that you would like us to discuss at microbeworld.org and tag them with twiv.

Filed Under: This Week in Virology Tagged With: circovirus, cytoplasm, H1N1, influenza, mimivirus, nucleus, pandemic, poxvirus, rotarix, rotavirus, swine flu, vaccine, viral, virology, virus

  • « Go to Previous Page
  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Go to Next Page »

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.