• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

cholesterol

Early Immune Responses to Herpes Simplex Virus Type I Infection

6 May 2021 by Gertrud U. Rey

by Gertrud U. Rey

Herpes simplex viruses infect cells of the skin and mucous membranes, where they establish a lifelong persistent infection in sensory neurons. Sporadic reactivation and viral shedding may lead to painful oral and genital disease and a three to five-fold increased risk of HIV transmission. There is currently no vaccine to prevent infection with herpes simplex virus type 1 or type 2 (HSV-1 or HSV-2).

Until recently it was thought that initial interactions of HSV-1 with the immune system only involve Langerhans cells. Langerhans cells are skin-resident sentinel macrophages that detect microbial antigens, and they engulf, process, and present these antigens to T cells for downstream immune functions. However, a recent study suggests that early during infection, HSV-1 also interacts with a newly identified immune cell known as an epidermal conventional dendritic cell type 2 (Epi-cDC2). Like Langerhans cells, dendritic cells can swallow microbe-infected cells and present the microbial antigens to T helper cells, ultimately triggering the actions of cytotoxic T cells, which directly kill infected cells.

The study aimed to better define the role of Epi-cDC2s in early HSV-1 infection using ex vivo explants as a model system. The explants consisted of pieces of human inner foreskin that were mounted on specialized gelatin scaffolds to mimic the in vivo environment encountered by HSV-1 during infection. The authors exposed the explants to an HSV-1 virus in which a viral membrane protein was fused to a green fluorescent protein (GFP), allowing them to visually track a resulting infection using a fluorescence microscope. This method revealed that at 24 hours after exposure to the GFP-tagged HSV-1, both Langerhans cells and Epi-cDC2s contained the virus in their cytoplasm, suggesting that these cells either engulfed HSV-1-infected skin cells and/or were themselves infected by HSV-1.

To determine whether the presence of HSV-1 in the cytoplasm of Epi-cDC2s resulted from infection and replication and not just from engulfing infected skin cells, the authors first did the following. They exposed cell cultures of Epi-cDC2s to HSV-1. After six hours of this exposure, Epi-cDC2s contained about as much virus as did control Langerhans cells, which are known to be infected by HSV-1. However, at 18 hours, Epi-cDC2s contained significantly higher HSV-1 levels than Langerhans cells, suggesting increased entry/uptake of virus into Epi-cDC2s compared to Langerhans cells. Next, to assess whether HSV-1 was also replicating in the Epi-cDC2 cells, not just entering them, the authors treated the cells with a fluorescent antibody that binds ICP27, a viral protein needed for replication. A significantly greater portion of Epi-cDC2s than Langerhans cells expressed ICP27, suggesting that HSV-1 was replicating, and doing so more efficiently in Epi-cDC2s.

Viruses may enter a host cell by a variety of mechanisms. One common mechanism, called receptor-mediated endocytosis, involves the formation of cell membrane-derived vesicles. In one version of this process, which requires a low pH, viral binding to a cell surface receptor triggers the cellular membrane to fold inward and form a slightly acidic “endosome” around the virus. Another version of receptor-mediated endocytosis is not dependent on a low pH, but requires cholesterol molecules and the motor protein actin to form cell surface protrusions called “ruffles.” When the ruffles become large enough, they collapse back onto the membrane and form large fluid-filled vesicles encasing the virus. In both of these versions of receptor-mediated endocytosis, the resulting vesicles enter the cytoplasm, where they eventually release their contents. In yet another mechanism of entry, also independent of acidic pH, viruses may simply fuse with the plasma membrane and deliver their contents into the cytoplasm.

Although HSV-1 can enter cells by any of these pathways, its entry mechanism differs in different types of cells. To determine which pathway HSV-1 uses to enter Langerhans cells and Epi-cDC2s, the authors treated both types of cells with a drug that prevents acidification of endosomes. They then infected the cells with the GFP-tagged HSV-1 and measured infection by quantitating GFP with a fluorescence microscope. Increasing doses of the drug led to increased inhibition of infection of Langerhans cells, suggesting that these cells are infected with HSV-1 via a pH-dependent mechanism. In contrast, the drug did not affect infection of Epi-cDC2s, suggesting that HSV-1 does not require an acidic pH for entering Epi-cDC2s.

To determine whether HSV-1 entry into Epi-cDC2s occurred via actin and cholesterol-dependent endocytosis, the authors treated Epi-cDC2s with inhibitors of actin or cholesterol prior to infection. Both treatments led to significant reduction in GFP fluorescence inside the cells, suggesting that cholesterol and actin are both important mediators of HSV-1 entry into Epi-cDC2s.

Langerhans cells express a cell surface receptor called langerin, which mediates entry of HIV and influenza A. To see whether this receptor is also required for entry of HSV-1, the authors infected Langerhans cells with HSV-1 in the presence of an antibody that neutralizes langerin. This inhibition of langerin expression led to diminished infection of Langerhans cells, suggesting that langerin is required for HSV-1 entry into them. In contrast, inhibition of langerin on Epi-cDC2s had no effect on HSV-1 infection efficiency, suggesting that, even though Epi-cDC2s do express some langerin, this receptor is not required for HSV-1 entry of these cells.

HSV-1 and HSV-2 are of high public health concern, and a vaccine to prevent infection with these viruses is urgently needed. Immune control of HSV-1/-2 infection and resolution of genital herpes lesions requires the collective action of various types of T cells, which are likely primed by different dendritic cell subsets. Understanding the dynamics of the initial interactions of HSV-1 and HSV-2 with cells of the immune system may result in better strategies for HSV-1/-2 vaccines. The pathways described here have important implications in vaccine design and prevention of persistent infection of neuronal cells.

Filed Under: Basic virology, Gertrud Rey Tagged With: actin, cholesterol, dendritic cell, herpes, herpes simplex virus, herpes simplex virus 1, HSV-1, infection, Langerhans cell, macrophage, receptor-mediated endocytosis, replication

RNA, in a Nutshell

7 January 2021 by Gertrud U. Rey

by Gertrud U. Rey

It is now a little more than a year since the emergence of SARS-CoV-2, and we already have several highly effective vaccines against this virus. Because of my previous research experience in vaccine science, I was very skeptical about the promise of a SARS-CoV-2 vaccine this soon. I was wrong, and I could not be happier about that.

Two of the leading vaccines were developed by Pfizer/BioNTech and Moderna and consist of a messenger RNA (mRNA) that encodes the full-length SARS-CoV-2 spike protein. Upon injection into a vaccine recipient, the mRNA would enter cells and be translated by the host protein synthesis machinery into the SARS-CoV-2 spike protein, which would then serve as an antigen to promote an immune response. mRNA vaccines are non-infectious and do not integrate into the genome, meaning that there is no risk of infection or mutations caused by inserted vaccine sequences. Although these vaccines are the first of their kind to be licensed for widespread use, the concept is not new. Reports of the first successful translation of a foreign mRNA in animals were published in 1990, and this technology has been refined ever since. Progress in the field has been hampered by concerns that the inherent instability of RNA would prevent its use for delivery as a therapeutic or vaccine. However, research has shown that the stability of RNA can be increased through various modifications and delivery methods.

One way a vaccine mRNA molecule can be modified is by placing it between two RNA sequences that don’t code for protein, i.e., untranslated regions (UTRs; see graphic), which stabilize the mRNA and optimize it for translation. The ends of the mRNA – also known as the 5′ and 3′ ends, respectively – can be further modified by addition of a “cap” and a “poly(A) tail.” The cap consists of a modified guanosine nucleotide followed by three phosphates (“G-PPP” in the graphic) and serves as a recognition signal for the cellular ribosome to bind and translate the mRNA. The poly(A) tail is a string of adenosine nucleotides (“AAA” in the graphic), which further stabilize the mRNA.

A common method for encapsulating and delivering the mRNA into cells is to encase it in a cocoon of phospholipids. For example, the mRNA molecule in both the Pfizer and Moderna vaccines is encapsulated in a lipid nanoparticle (pictured), which protects the mRNA from degradation and ensures proper delivery into cells. Addition of cholesterol molecules makes the nanoparticle more fluid and is thought to increase its ability to fuse with our cell’s membranes to deliver the mRNA into our cells. Addition of polyethylene glycol (PEG) increases the potency of the vaccine particle by hiding it from the host immune system, making it more water soluble, and slowing its degradation.

One of the reasons why SARS-CoV-2 mRNA vaccines could be produced so quickly is because all this basic science was already in place at the start of the pandemic. And although the SARS-CoV-2 vaccines are the first mRNA vaccines to be authorized by the FDA for emergency use, several mRNA vaccines have undergone clinical trials in humans before, for at least four infectious diseases: rabies, influenza, cytomegalovirus infection, and Zika virus infection.

Another factor that helped speed up the process of SARS-CoV-2 vaccine production is that, luckily, scientists were able to extrapolate the insight gained from the study of other coronaviruses to SARS-CoV-2. Like the spike protein of other coronaviruses, the SARS-CoV-2 spike protein is highly immunogenic and is targeted by neutralizing antibodies, which bind viral antigens to inactivate the virus and prevent infection of new cells. The spike protein also mediates binding of the virus to the ACE2 host cell receptor via spike’s receptor-binding domain and fusion of the viral particle with the host cell membrane via spike’s fusion domain. However, to mediate this fusion, the SARS-CoV-2 spike protein undergoes a structural rearrangement from its pre-fusion conformation. By 2017, scientists at the Vaccine Research Center of the National Institute of Allergy and Infectious Diseases had already determined that the pre-fusion form of Middle East respiratory syndrome coronavirus (MERS-CoV) is more immunogenic than its post-fusion form. Accordingly, they had spent several years engineering a mutation that locks the translated spike protein into its pre-fusion structure. When the SARS-CoV-2 genome sequence was published one year ago, scientists were able to compare it to the MERS-CoV sequence and identify the exact location where the pre-fusion stabilizing mutation had to be made. And luckily, making the mutation in the SARS-CoV-2 spike mRNA sequence stabilized the spike protein in its pre-fusion conformation. 

Conventional vaccine strategies have repeatedly failed to yield vaccines against challenging viruses like HIV-1, herpes simplex virus, and respiratory syncytial virus (RSV), while recent advances in mRNA vaccine technology show promise in immunizing against some of these viruses. For example, RSV poses a substantial public health threat due to its association with severe morbidity and mortality in infants and premature babies. Despite 60 years of continual efforts, we still don’t have a licensed RSV vaccine, in part because natural RSV infection does not induce a durable immune response. We do know that the RSV F (fusion) protein is highly conserved and elicits broadly neutralizing antibodies, and recent studies have shown that similar to the case of the SARS-CoV-2 spike protein, most neutralizing activity in human serum is directed against the pre-fusion form of the RSV F protein. This observation inspired scientists at Moderna to develop an RSV pre-fusion F protein mRNA vaccine, with Phase I clinical trial data showing promising results.

One of the exciting features of the mRNA vaccine platform is that it is not only applicable to preventing viral diseases but can also be used for treating cancer. Cancer mRNA vaccines would target tumor-associated antigens that are preferentially expressed in cancer cells.

Vaccination remains one of the most effective public health measures for preventing and controlling infectious diseases. However, conventional vaccine approaches using live-attenuated and inactivated virus vaccines are time-consuming and expensive. mRNA vaccines can be produced more quickly and cost-effectively than conventional vaccines because they obviate the need for growing and/or repeatedly passaging viruses in cell culture. Nonetheless, we would not know any of this without decades of prior studies, which further highlights the importance of regularly funding basic research.

Filed Under: Basic virology, Gertrud Rey Tagged With: cancer mRNA vaccines, cholesterol, encapsulated, lipid nanoparticle, mRNA vaccine, PEG, polyethylene glycol, pre-fusion spike protein, rsv, SARS-CoV-2, spike protein

TWiV 314: Einstein goes viral

7 December 2014 by Vincent Racaniello

On episode #314 of the science show This Week in Virology, Vincent travels to Albert Einstein College of Medicine where he speaks with Kartik, Ganjam, and Margaret about their work on Ebolavirus entry, a tumor suppressor that binds the HIV-1 integrase, and the entry of togaviruses and flaviviruses into cells.

You can find TWiV #314 at www.microbe.tv/twiv.

Filed Under: This Week in Virology Tagged With: CDC protein, checkpoint, cholesterol, ebola virus, Ebolaviruses, endosome, hemorrhagic fever, HIV-1, INI1, integrase, lysosome, membrane fusion, monoclonal antibody, NPC1, rhabdoid tumor, tumor suppressor, viral, virology, virus, virus entry

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.