• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

Chikungunya virus

Fighting Viruses with Viruses

5 May 2022 by Gertrud U. Rey

by Gertrud U. Rey

Errors during viral replication can give rise to shortened and/or rearranged genomic sequences known as “defective viral genomes” (DVGs). Because DVGs often lack critical elements needed for replication and formation of new viral particles, virions containing DVGs can only complete a replication cycle if they co-infect a cell together with respective full-length (i.e., wild type) viruses. To replicate their genomes, DVGs often hijack missing proteins from the wild type viruses, a phenomenon that can result in suppression of wild type virus replication. There is increasing evidence to suggest that this suppression can be exploited for the development of antiviral agents.

Marco Vignuzzi at the Institut Pasteur has been exploring this idea by investigating the antiviral potential of DVGs produced during infection of cells with various viruses. In an effort to capture DVGs as they were formed in cell culture, Vignuzzi and colleagues infected mammalian and mosquito cells with Chikungunya virus, a mosquito-borne virus that causes symptoms similar to those caused by dengue virus. They then isolated newly emerging virions from the cells and used those particles to infect new cells – a cycle that was carried out 10 times in a technique known as serial passaging. Sequencing and quantification of viral genomes isolated from the last passage revealed that the number of DVGs increased by about 100,000 between the first and last passage. The most prevalent DVGs were sorted into four groups, with DVGs within each group having deletions of similar sizes and at similar genomic locations. Three of the groups included mostly DVGs derived from mammalian cells and the fourth group included mostly DVGs derived from mosquito cells.

To determine whether DVGs are also generated in an infected arthropod, the authors infected Aedes aegypti mosquitoes with Chikungunya virus by allowing them to feed on virus-infected blood. Ten days after infection, the mosquitoes were dissected, total RNA was isolated, and DVGs were identified by sequencing the RNA using DVG-specific primers. This analysis revealed that the DVGs produced in mosquitoes had similar deletion patterns and profiles as those produced in cell culture, suggesting that DVGs are generated both in cell culture and mosquitoes.

All subsequent studies were done using 20 mammalian- and mosquito-derived DVGs that occurred most frequently and persisted through all passages. To confirm that the DVGs were indeed defective and unable to replicate inside a cell in the absence of full-length virus, the authors introduced (i.e., “transfected”) RNA molecules encoding each DVG into mammalian cells and extracted total RNA from the cells at 8, 20, 28, and 44 hours post-transfection. DVG RNA was then quantified by PCR using primers specific for the respective DVGs. The authors observed that in contrast to wild type virus levels observed in control cells, which increased steadily over time, DVG levels decreased across all time points. This finding confirmed that in the absence of wild type virus DVG RNA was not replicated, but degraded over time.

To see whether the 20 DVGs actually interfered with replication of wild type virus, the authors transfected mammalian cells with a 1:1 ratio of an RNA encoding a DVG and an RNA encoding a full-length fluorescently-tagged wild type Chikungunya virus, so they could monitor the presence of the wild type virus by fluorescence microscopy at various timepoints. Wild type Chikungunya viruses transfected together with most DVG-encoding RNAs continued fluorescing strongly at 48 hours post-transfection, suggesting that most DVGs did not inhibit or reduce the replication of wild type virus when transfected at a 1:1 ratio. However, when the DVG/full-length virus ratio was increased to 10:1, fluorescence of full-length Chikungunya viruses decreased by 10 – 1,000-fold in the presence of almost all DVGs, suggesting that a higher ratio of most DVG RNAs increased the likelihood of these genomes to confiscate needed replication elements from wild type viruses and thus interfere with their reproduction. Interestingly, the smallest DVG with the biggest deletions did not seem to interfere with wild type virus replication, probably because this genome was missing too many elements and could not be adequately compensated by the presence of full-length virus. Overall, these results suggested that both mammalian- and mosquito cell-derived DVGs can interfere with wild type virus replication in mammalian cells. Remarkably, when this experiment was repeated in mosquito cells, most of the mosquito cell-derived DVGs that could inhibit wild type virus replication in mammalian cells were unable to do so in mosquito cells. Although the exact reason for this effect is unclear, it is possible that the prevalence of arthropod-borne viruses in mosquitoes has led these viruses to evolve some resistance to the effects of DVGs during viral replication in mosquitoes.

The authors also found that although most DVGs only inhibited Chikungunya virus strains that were closely related to the strain they were derived from, a small number of DVGs also inhibited more distantly related viruses like Sindbis virus, suggesting that DVGs may be capable of inhibiting a broad range of viruses.

In a final set of experiments aimed to evaluate the ability of the DVGs to prevent viral spread within mosquito hosts, the authors injected mosquitoes with DVG-encoding RNAs, and two days later they infected them with a fluorescently-tagged wild type Chikungunya virus. A control group of mosquitoes was only infected with Chikungunya virus but did not receive any DVGs. Five days after infection, the mosquitoes were killed and analyzed for infection and viral spread by looking for the presence of virus in the midgut and the rest of the body, respectively. All mosquitoes had similar levels of virus in the midgut, whether they had received DVGs or not, suggesting that DVGs had no significant impact on infection. However, mosquitoes that had received DVGs had significantly lower levels of virus in the rest of the body compared to control mosquitoes, suggesting that DVGs can reduce replication and spread of virus in mosquitoes.   

Because all experiments involved delivery of DVGs before or concurrently with wild type virus infection, it is unclear whether DVGs would have any therapeutic effect if they were applied after infection. Presently, the most feasible use for DVGs would be as a vector control strategy by engineering and releasing mosquitoes that are unable to transmit virus. However, considering that DVGs have immunostimulatory potential and their presence in humans correlates with milder disease and better outcome after influenza virus, respiratory syncytial virus, hepatitis C virus, and dengue virus infections, it would be interesting to see if they could be applied as direct therapeutics in humans. Using a combination of lab experiments and computational approaches, Vignuzzi and colleagues identified DVGs with optimal interference activity in a follow-up study. Based on these results, the French biotechnology company Meletios Therapeutics is currently developing a new class of antivirals against Zika virus and Chikungunya virus. This is exciting news, because there are currently no effective antiviral treatments for these two viral infections, and I look forward to following up on these new developments in a future post.  

Filed Under: Basic virology, Gertrud Rey Tagged With: antiviral, Chikungunya virus, defective viral genomes, dengue virus, DVGs, mosquitoes, zika virus

TWiV 498: Salivating at ASM Microbe

17 June 2018 by Vincent Racaniello

Vincent, Kathy and Rich travel to ASM Microbe 2018 in Atlanta where they speak with Stacy Horner and Ken Stapleford about their careers and their research.

Click arrow to play
Download TWiV 498 (42 MB .mp3, 68 min)
Subscribe (free): iTunes, RSS, email

Become a patron of TWiV!

Show notes at microbe.tv/twiv

Filed Under: This Week in Virology Tagged With: aedes aegypti, Aedes albopictus, alphavirus, ASM Microbe 2018, Chikungunya virus, epitranscriptome, evolution, m6 adenosine, m6A, quasispecies, RNA, RNA modification, viral, virology, virus, viruses

Zika virus and mosquito eradication

9 June 2016 by Vincent Racaniello

Aedes aegyptiThe Aedes aegypti eradication campaign coordinated by the Pan American Health Organization led by 1962 to elimination of this mosquito from 18 countries, including Brazil. Ae. aegypti transmits not only Zika virus, but dengue virus, chikungunya virus, and yellow fever virus. Could control measures be implemented today to achieve similar control of this mosquito? Two articles in PLoS Neglected Tropical Diseases revisit the successful PAHO mosquito control campaign and suggest that its approaches should be revived.

The elimination of Ae. aegypti in 18 countries, which was accompanied by a marked reduction in dengue hemorrhagic fever, was achieved by removing mosquito breeding sites or spraying them with DDT. Determining whether households harbored such breeding sites was essential for the effectiveness of the campaign.

The United States did not participate in the PAHO campaign, even though Ae. aegypti was (and still is) present in that country, and was a vector for outbreaks of dengue fever from the 1920s through the 1940s. Peter Hotez (link to paper) cites a “lack of funds and political will” and “logistical difficulties due to lack of access to private homes or cultural norms of privacy in the US”. As a consequence, by 1970 the US became one of the last reservoirs of Ae. aegypti in the Americas.

Eventually the PAHO campaign fell apart and Ae. aegypti returned, followed by outbreaks of dengue fever in the 1980s in Latin America and the Caribbean, and Chikungunya virus and Zika virus in 2013.

Hotez argues that while control of Ae. aegypti is labor intensive and involves house-to-house spraying, PAHO demonstrated its feasibility. He further suggests that by not participating in the PAHO campaign, the US failed to establish a generation of mosquito control expertise, which is now needed as Zika virus and other mosquito-borne viruses threaten to spread. He calls for an “unprecedented campaign against the Ae. aegypti mosquito”. However, he does not specify exactly what kind of control should be implemented, only saying that “these activities might not closely resemble the Latin American programs of the 1960s”.

Paul Reiter (link to paper) believes that the success of the PAHO campaign “can be attributed to a single aspect of the behavior of the mosquitoes: female Ae. aegypti do not lay all their eggs in one basket”, but rather place them at multiple locations. During the PAHO campaign, infested containers were identified and sprayed with DDT, increasing the likelihood that a female would lay eggs at a site that had been treated. This approach is called perifocal.

The current use of fogging machines to spray residential areas with insecticides has a low impact on mosquito populations, according to Reiter, because they only work for a few minutes when the droplets are airborne. He believes that we should return to perifocal treatments to eliminate mosquitoes, but not using DDT. Rather he suggests the use of other, novel insecticides, such as crystals of deltamethrin embedded in a rain and sun-proof polymer that ensures release for three months.

Reiter acknowledges that long-term use of insecticides leads to resistance, in which case we should turn to the new anti-mosquito approaches that are being developed, including the release of mosquitoes containing Wolbachia bacteria or a lethal gene. But he indicates that these approaches “are some way from mass application”, and meanwhile, perifocal approaches could reduce mosquito populations (although the newer insecticides would first need to be tested).

The best way to prevent viral infection is with a vaccine, but one for Zika virus is likely years away. Meanwhile, mosquito control can make a difference, as it could for the next emerging virus well before a vaccine can be developed.

Filed Under: Basic virology, Information Tagged With: Chikungunya virus, DDT, dengue virus, mosquito, PAHO, perifocal control, vaccine, viral, virology, virus, viruses, zika virus

TWiV 339: Herpes and the sashimi plot

31 May 2015 by Vincent Racaniello

On episode #339 of the science show This Week in Virology, tre TWiV amici present three snippets and a side of sashimi: how herpesvirus inhibits host cell gene expression by disrupting transcription termination.

You can find TWiV #339 at www.microbe.tv/twiv.

Filed Under: Uncategorized Tagged With: cancer, Chikungunya virus, exon, herpesvirus, host shutoff, intron, IRF7, Lassa fever, mosquitoes, splicing, transcription termination, translation, viral, virology, virus, West Nile virus

TWiV 226: Taking the viral A train with Terry Dermody

31 March 2013 by Vincent Racaniello

On episode #226 of the science show This Week in Virology, Vincent and Dickson speak with Terry Dermody about his career in medicine and virology.

You can find TWiV #226 at www.microbe.tv/twiv.

Filed Under: This Week in Virology Tagged With: Chikungunya virus, entry, pathogenesis, receptor, reovirus, Terry Dermody, viral, virology, virus

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.