• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

bat

TWiV 231: Hepaciviruses and pegiviruses in bats and rodents

5 May 2013 by Vincent Racaniello

On episode #231 of the science show This Week in Virology, Vincent meets up with Amit, Lan, and Ian to discuss their discovery of hepaciviruses and pegiviruses in bats and rodents.

You can find TWiV #231 at www.microbe.tv/twiv.

Filed Under: This Week in Virology Tagged With: amit kapoor, bat, hepacivirus, homolog, ian lipkin, lan quan, pegivirus, reservoir, viral, virology, virus

No further evidence of novel coronavirus

8 October 2012 by Vincent Racaniello

disease timelineThere is no evidence for further spread among humans of a novel coronavirus recently isolated from two individuals with severe respiratory illness. This conclusion has been drawn after scrutinizing the travels (figure) and contacts of a Qatari adult who was transferred to intensive care in London.

While in Saudi Arabia the 49 year old male patient developed mild respiratory illness (rhinorrhea and fever). These symptoms resolved several days after his return to Qatar on 18 August. At the beginning of September he developed another respiratory illness which worsened and required his transport to London. Later that month the novel coronavirus was detected in his respiratory tract.

This timeline suggests that the patient acquired the viral infection in Qatar, as he was there for 16 days prior to illness. How he obtained the infection is not known. He did spend time on a Qatari farm where sheep and camels are kept. The SARS coronavirus is believed to have originated in bats and spread to humans either directly or through animals in meat markets, and the new coronavirus is related to bat coronaviruses.

Sixty-four close contacts were identified among the patient’s health care workers, friends, and family during his stay in the United Kingdom. None of these have developed severe disease, while 13 have displayed mild respiratory symptoms, and the new coronavirus was not detected 10 of these individuals.

These results show that no human to human transmission of the novel coronavirus has taken place that resulted in mild or severe disease. Serological testing for anti-viral antibodies must be done to determine if asymptomatic infections have occurred. It will also be important to conduct serological surveys to determine whether there is evidence for infection in the general populations of Qatar and Saudi Arabia. It is also likely that animal surveys will be done to identify potential reservoirs for the virus.

RG Pebody et al. 2012. The United Kingdom public health response to an imported laboratory confirmed case of a novel coronavirus in September 2012. Eurosurveillance, Volume 17, Issue 40.

Update: A third human infection with the novel coronavirus was confirmed on 4 November 2012 in Saudi Arabia.

Filed Under: Basic virology, Information Tagged With: bat, coronavirus, Qatar, renal failure, Ron Fouchier, SARS, Saudi Arabia, severe respiratory disease, viral, virology, virus, zoonosis

A new coronavirus isolated from humans

25 September 2012 by Vincent Racaniello

Coronavirus virionA new coronavirus has been isolated from two individuals with severe respiratory illness. It is different from the SARS coronavirus, but health officials are nonetheless preparing for a rapid response should the virus be detected elsewhere.

The novel coronavirus was first reported by Ali Mohamed Zaki on ProMED-mail on 15 September 2012, from a 60 year old male patient in Saudi Arabia with pneumonia and acute renal failure who died in July. The virus was isolated by culturing sputum on Vero and LLC-MK2 cells, and identified as a coronavirus by polymerase chain reaction. Dr. Zaki sent the virus to Ron Fouchier in the Netherlands who sequenced its genome and confirmed that it is a beta-coronavirus closely related to bat coronaviruses.

At the beginning of September 2012 a 49 year old male Qatari national who had previously traveled to Saudi Arabia was admitted to an intensive care unit in Doha with severe respiratory illness. He was moved to the United Kingdom where laboratory tests confirmed the presence of the novel coronavirus. Comparison of a 200 nucleotide genome sequence with that from the Saudi national revealed 99.5% identity (one mismatch). Alignment of this sequence with that of other coronaviruses shows that the new virus is related to bat coronaviruses.

This new virus is not the SARS coronavirus, but because it is related to bat coronaviruses there is concern that it could spread rapidly among humans and cause serious respiratory disease. This is why WHO has placed health officials in its six regions on alert, and has issued a case definition so that the disease may be readily detected. The definition comprises: acute respiratory syndrome which may include fever (≥ 38°C , 100.4°F) and cough requiring hospitalization or with suspicion of lower airway involvement (clinical or radiological evidence of consolidation) not explained by any other infection or any other aetiology; and close contact within the last 10 days before onset of illness with a probable or confirmed case of novel coronavirus infection while the case-contact was ill, or travel to or residence in an area where infection with novel coronavirus has recently been reported or where transmission could have occurred.

Ron Fouchier doesn’t believe that we should become overly worried about these cases:

There are now six known human coronaviruses; one of them is SARS, but four cause the common cold and are quite innocuous. So let’s keep both feet on the ground and not blow this out of proportion.

The fact that the virus has been isolated from individuals with severe respiratory disease does not mean that it is the causative agent. To prove this requires additional work, as Fouchier notes:

 For starters, we’ll find out whether animals get sick from this virus. You can isolate a virus from a patient, but that does not mean they died from it; to show that it causes disease you need to fulfill Koch’s postulates. That’s what we did for SARS, and it’s what we hope to do here; we’ve applied for emergency ethical approval. The most obvious animal species to put this virus in are mice, ferrets, and perhaps monkeys.

Proof that the new coronavirus is an agent of respiratory disease would come from its isolation from additional patients with the disease. An outbreak of severe respiratory disease in Jordan in April of 2012 is now being reviewed for evidence of the novel coronavirus.

Coronaviruses are composed of enveloped virions that contain a positive strand RNA genome. Human coronaviruses may cause the common cold or severe respiratory illness. In 2002 the SARS coronavirus emerged in China and spread globally, infecting over 8000 individuals and killing more than 900. The SARS coronavirus is believed to have originated in bats and spread to humans either directly or through animals in meat markets. Because the new coronavirus isolated from two patients is related to bat coronaviruses, there is concern that a scenario similar to the SARS outbreak is in the making. Whether or not this is true will be revealed in the coming weeks.

Update. Eurosurveillance has published communications on how to detect the novel coronavirus by real-time polymerase chain reaction; and the case definition and public health measures. The authors conclude:

There is strong evidence that a novel virus caused the severe disease in the two patients. Based on this assumption it can be concluded that the virus poses an as yet poorly defined level of threat to people’s health. There may have been other cases in the past that were missed and serological testing of stored sera and other specimens from such cases will be important. […] Our assessment, based on the limited information currently available, is that the risk of wide spread transmission resulting in severe disease is low. However, the emergence of a novel coronavirus requires a thorough assessment which is currently being coordinated at international level.

Update 2. CDC has published a travel advisory:

At this time CDC, does not recommend that travelers change their travel plans.

Filed Under: Basic virology, Information Tagged With: bat, coronavirus, renal failure, Ron Fouchier, SARS, Saudi Arabia, severe respiratory disease, viral, virology, virus, zoonosis

TWiV 183: Bats out of hell

13 May 2012 by Vincent Racaniello

On episode #183 of the science show This Week in Virology, Connor Bamford joins the TWiV team to discuss bats as hosts for major mammalian paramyxoviruses.

You can find TWiV #183 at www.microbe.tv/twiv.

Filed Under: This Week in Virology Tagged With: bat, bioterrorism, H5N1, Hendra, influenza, measles, mumps, nipah, paramyxovirus, respiratory syncytial, viral, virology, virus

Bats harbor many viral sequences

3 November 2010 by Vincent Racaniello

How large is the zoonotic pool – all the animal viruses that could one day infect humans? Assuming that there are 50,000 vertebrates on earth, each with 20 viruses, the number is one million – probably a vast underestimate. Determining just how many viruses exist in a variety of animal species is technically feasible, limited only by the number of hosts that can be sampled. A study of the virome of several North America bats reveals that these animals – which constitute 25% of all the known mammalian species – harbor a very large collection of viral sequences.

Advances in nucleotide sequencing technologies (deep sequencing) have made it possible in recent years to study the virome – the genomes of all viruses in a host – in human blood, diarrhea, and respiratory secretions; grapevines, and feces of horses and bats. The latter mammals are a particularly important subject because it is known that they harbor the predecessors of several important human viruses, including SARS coronavirus, ebolavirus, marburgvirus, Nipah, Hendra, and rabies viruses. Since there are about 1200 known species of bats, the potential for future human zoonoses is significant.

A multicenter group comprising virologists* and chiropterists (scientists who study bats) has examined the virome of three North American bat species: big brown bats (Eptesicus fuscus), tri-colored bats (Perimyotis subflavus), and little brown myotis (Myotis lucifugus). Deep sequencing was used to analyze fecal and oral samples from 41 bats captured on one night in Western Maryland. The results provide a comprehensive glimpse of the bat virome.

The 576,624 sequence ‘reads’ (a read is the result of a single sequence reaction, in this study ~250 nucleotides) on six pools of fecal samples revealed an amazing diversity of viral sequences (figure), with representatives of human, other mammals, insect, bacteriophage, fish, shrimp, protist, reptile, plant, avian, fungi, algae, and marine viruses. Among the interesting findings are sequences of three novel coronaviruses from big brown bats. Many coronaviruses have previously been found in bats; the results of this study provide more evidence that these mammals are likely to be sources of future human infections.

Novel viruses of plants and insects were also identified in fecal samples from all bats. This observation can be explained by the bats’ prodigious appetite for insects, which harbor both insect or plant viruses (the latter transmitted to plants by insect vectors). It seems unlikely that these viruses replicate in bats, but pass through the gastrointestinal tract into the feces.

Perhaps not surprisingly (given the diversity of bacteria that colonize mammalian intestinal tracts), sequences of novel bacteriophages were also identified in fecal samples. One appears to have high sequence identity with a bacteriophage that infects the plague bacterium Yersina pestis. Curiously, such bacteria are not known to colonies animals in the northeastern United States. A second bacteriophage infects strains of E. coli associated with human illnesses. These findings suggest that bats could be involved in the spread of human bacterial pathogens.

The main viral sequences identified in pooled oral samples were of a novel cytomegalovirus. These viruses appear to be common in bats, and have been been detected in many previous studies.

One question that arises from these findings is whether bats are unique in harboring a large collection of diverse viruses. The answer to this question awaits studies of the viromes of other wild animals.

Viral discovery by massive sequencing will no doubt identify many new viruses in a wide range of species. However, this technology cannot answer some of the more intriguing biological questions, such as which hosts support viral replication, and whether it is associated with disease. Answers to these questions will require construction of complete DNA copies of viral genomes and recovery of infectious viruses by transfection of cells in culture.

The title of this post is ‘Bats harbor many viral sequences’, not ‘many viruses’. That’s because no infectious viruses were identified – only parts of their genomes. If you wish to conclude that a certain virus infects bats, you must either isolate the virus in cell culture, or show that the entire viral genome is present in tissues or fluids.

*including Eric F. Donaldson and Matt Frieman, who spoke about this work on TWiV 90 and 65.

Donaldson EF, Haskew AN, Gates JE, Huynh J, Moore CJ, & Frieman MB (2010). Metagenomic Analysis of the Virome of three North American Bat Species: Viral Diversity Between Different Bat Species that Share a Common Habitat. Journal of virology PMID: 20926577

Filed Under: Basic virology, Information Tagged With: bacteriophage, bat, coronavirus, herpesvirus, viral, virology, virome, virus

TWiV 90: Guano happens

11 July 2010 by Vincent Racaniello

Hosts: Vincent Racaniello, Alan Dove, Rich Condit, and Eric F. Donaldson

On episode #90 of the podcast This Week in Virology, Vincent, Alan, Rich and Eric discuss identification of viruses in Northeastern American bats, vaccinia virus infection after sexual contact with a military vaccinee, and identification of a new flavivirus from an Old World bat in Bangladesh.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV090.mp3″]

Click the arrow above to play, or right-click to download TWiV #90 (64 MB .mp3, 89 minutes)

Subscribe to TWiV (free) in iTunes , at the Zune Marketplace, by the RSS feed, or by email, or listen on your mobile device with Stitcher Radio.

Links for this episode:

  • Vaccinia virus infection after sexual contact with vaccinee
  • Smallpox vaccination overview
  • Smallpox vaccine lesions (jpg)
  • Smallpox hospital, Roosevelt Island, NY (photo 1, photo 2)
  • Isolation of a flavivirus from bats in Bangladesh (PLoS Pathogens)
  • Review on hepatitis G virus
  • Dickson has been teaching at Singularity University and fishing in Bozeman MT (jpg)
  • Letters read on TWiV 90

Weekly Science Picks

Eric – Year of Darwin by Sean Carroll
Rich –
March of the Penguins
Alan –
Standing-height desks
Vincent – DengueWatch (thanks Richard!)

Send your virology questions and comments (email or mp3 file) to twiv@microbe.tv or leave voicemail at Skype: twivpodcast. You can also post articles that you would like us to discuss at microbeworld.org and tag them with twiv.

Filed Under: This Week in Virology Tagged With: bat, deep sequencing, flavivirus, gbv, hepatitis g virus, smallpox, vaccination, vaccine, vaccinia, viral, virology, virome, virus

  • « Go to Previous Page
  • Go to page 1
  • Interim pages omitted …
  • Go to page 4
  • Go to page 5
  • Go to page 6
  • Go to page 7
  • Go to Next Page »

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.