• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

bacteriophage

Communication between virus-infected cells

26 January 2017 by Vincent Racaniello

lysis or lysogenyYou might recall learning in high school biology that bacteriophage infection of a host can lead to either replication and cell lysis, or integration of the viral genome into the host (illustrated). The latter event, called lysogeny, spares the host from virus induced killing. For some phages, the decision between lysis and lysogeny appears to be communicated between cells by a small peptide (link to paper).

Evidence that virus-infected cells produce a substance that can regulate the lysis-lysogeny decision came from the observation that conditioned medium from Bacillus subtilis infected with the bacteriophage phi3T – prepared so that is was virus and cell free – protects cells from lysis. The protective component is destroyed by digestion with a proteinase and hence is a protein. Conditioned medium not only inhibits cell lysis, but increases lysogeny, measured by integration of viral DNA into the bacterial genome.

Examination of the genome sequence of phage phi3T suggested that a six amino acid peptide, Ser-Ala-Ile-Arg-Gly-Ala, was the component in conditioned medium that regulates the lytic-lysogenic decision. Addition of the synthetic peptide to infected cells decreased lysis. The levels of this peptide increase during each cycle of phage infection of the Bacillus host.

The authors call the communication peptide ‘arbitrium’ from the Latin word meaning ‘decision’. The gene encoding the peptide is aimP.

AimP appears to work by entering the bacterium through a transporter protein and binding a protein in the bacterial cell called AimR. The AimR protein in turn binds a sequence in the bacterial genome called aimX. When AimR is bound by the peptide, it cannot bind aimX and lysogeny occurs. In the absence of peptide, AimR binds aimX and lysis proceeds. The product of the aimX gene appears to be a regulatory RNA, but how it promotes lysis is not known.

Different phages of B. subtilis also encode peptides that regulate the lysis-lysogeny decision in a phage-specific manner.

These findings describe a viral communication system that determines whether a bacterial host is lysed or lysogenized. When viruses initially infect a host, the result is lysis because levels of peptide are low. After several cycles of infection the AimP concentrations increase, and upon entry of the peptide into bacteria they lead to lysogeny.

The authors of this work suggest that the arbitrium system is a way for the virus to sense the amount of previous infections to decide whether lysis or lysogeny should occur. If many previous infections have taken place, the host population could be too low to support lytic replication, hence lysogeny occurs.  Because lysogens can divide, the bacterial population can be restored to a level that can sustain virus infection.

Of course, the virus particle cannot sense anything – it is a bacterial protein that  binds AimP and another bacterial gene that controls lysis. In other words, the virus-infected cell, not the virus, can sense the amount of previous infections.

It should be straightforward to search the genome sequences of phages that infect other bacteria to determine if such a communication system is widespread. More interesting is whether viruses that infect eukaryotes also have  communication systems that guide decisions about lytic versus non-lytic or latent infection.

Filed Under: Basic virology, Information Tagged With: Bacillus subtilis, bacteriophage, communication, lamda phage, lysis, lysogeny, peptide, viral, virology, virus

A viral nucleus

19 January 2017 by Vincent Racaniello

Cell typesA unique feature of eukaryotic cells, which distinguishes them from bacteria, is the presence of a membrane-bound nucleus that contains the chromosomal DNA (illustrated; image credit). Surprisingly, a nucleus-like structure that forms during viral infection of bacteria is the site of viral DNA replication (link to paper).

During infection of Pseudomonas bacteria with the phage 2O1phi2-1, a separate compartment forms in which viral DNA replication takes place. A phage protein, gp105, makes up the outer layer of this compartment, which initially forms near one end of the cell, and then migrates to the center. The migration of the compartment takes place on a spindle made up of the tubulin-like protein PhuZ.

In addition to viral DNA, certain proteins gain entry into this compartment, including viral proteins involved in DNA and mRNA synthesis, and at least one host cell protein. Other proteins, such as those involved in translation and nucleotide synthesis, are excluded. This compartmentalization very much resembles that of the nucleus of eukaryotic cells.

Packaging of the viral DNA takes place on the surface of the viral nucleus. Empty phage capsids form at the bacterial cytoplasmic membrane, then migrate to the compartment where they attach firmly to the surface. By an unknown mechanism, DNA moves from the compartment into the capsid. Then  capsids are released from the surface to further mature in the cytoplasm. The completed phages are released from the cell upon bacterial lysis.

These fascinating observations raise a number of unanswered questions. Does infection with other phages lead to assembly of a viral nucleus? How do molecules selectively move in and out of the structure?

Perhaps the most interesting question relates to the origin of viruses and cells. According to one hypothesis, self-replicating, virus-like nucleic acids might have first appeared on Earth, followed by cells without a nucleus. Was the nucleus a viral invention?

Filed Under: Basic virology, Information Tagged With: bacteriophage, DNA, eukaryote, membrane-bound compartment, nucleus, prokaryote, viral, virology, virus, viruses

Giving your neighbor the gift of virus susceptibility

5 January 2017 by Vincent Racaniello

SiphoviridaeVirus infections initiate when virions bind to receptors on the cell surface. It is well known that cells can be made susceptible to infection by providing DNA encoding the virus receptor. For example, mice cannot be infected with poliovirus, but become susceptible if they are given the human poliovirus receptor gene. Now we have learned that providing the receptor protein is sufficient to make cells susceptible to infection (link to paper).

Bacteriophages determine the composition of microbial populations by killing some bacteria and sparing others. Bacteriophages are typically host specific, a property that is largely determined at the level of attachment to host cell receptors. How resistant and sensitive bacteria in mixed communities respond to phage infection has not been well studied.

Several phages (including SPP1, pictured) of the soil bacterium Bacillus subtilis first attach to poly-glycosylated teichoic acids (gTA), and then to the membrane protein YueB, leading to injection of DNA into the cell. Cells that lack the gene encoding either of these proteins are resistant to infection.

When a mixed culture of resistant and susceptible B. subtilis cells were infected with phage SPP1, both types of cells became infected and killed. Infection of resistant cells depended on the presence of susceptible cells, because no infection occurred in pure cultures of resistant cells.

Both infected and uninfected bacteria release small membrane vesicles that contain proteins, nucleic acids, and other molecules. Phage SPP1 can attach to  membrane vesicles released by susceptible strains of B. subtilis, showing that they contain viral receptor proteins. Furthermore, phage SPP1 can infect resistant cells that have been incubated with membrane vesicles from a susceptible strain – in the absence of intact susceptible cells.

These results show that membrane vesicles released by susceptible bacteria contain viral receptors that can be inserted into the membrane of a resistant cell, allowing infection. Because phage infection can lead to transfer of host DNA from one cell to another, the results have implications for the movement of genes for antibiotic resistance or virulence. It’s possible that such genes may move into bacteria that have only ‘temporarily’ received virus receptors via membrane vesicle transfer.

These findings should also be considered when designing phage therapy for infectious diseases. The idea is to utilize phages that are host specific and can only destroy the disease-producing bacteria. It’s possible that the host range of such phages could be expanded by receptor protein transfer. As a consequence, unwanted genes might make their way into ‘resistant’ bacteria.

I wonder if membrane vesicle mediated transfer of receptors also occurs in eukaryotic cells. They shed membrane vesicles called exosomes, which contain protein and RNA that are delivered to other cells. If exosomes bear receptors for viruses, they might be able to deliver the receptors to cells that would not normally be infected. The types of cells infected by a virus would thereby be expanded, potentially affecting the outcome of viral disease.

Filed Under: Basic virology, Information Tagged With: Bacillus subtilis, bacteriophage, membrane vesicles, protein transfer, receptor, SPP1 bacteriophage, susceptibility, susceptible, viral, virology, virus, viruses

TWiV 412: WO, open the borders and rig the infection

24 October 2016 by Vincent Racaniello

The TWiVome reveal the first eukaryotic genes found in a bacteriophage of Wolbachia, and how DNA tumor virus oncogenes antagonize sensing of cytoplasmic DNA by the cell.

You can find TWiV #412 at microbe.tv/twiv, or listen below.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV412.mp3″]

Click arrow to play
Download TWiV 412 (73 MB .mp3, 121 min)
Subscribe (free): iTunes, RSS, email

Become a patron of TWiV!

Filed Under: This Week in Virology Tagged With: adenovirus, bacteriophage, black widow spider toxin gene, cGAS, DNA sensing, DNA tumor virus, horizontal gene transfer, interferon, oncogene, p53, papillomavirus, polyomavirus, Rb, STING, viral, virology, virus, viruses, WO, wolbachia

Eukaryotic genes in a bacteriophage

13 October 2016 by Vincent Racaniello

Wolbachia
Wolbachia in an insect cell. Image credit: PLoS/Scott O’Neill.

Viruses are tidily categorized into three groups according to the hosts they infect – bacteriophages, eukaryotic viruses, and archaeal viruses. Viruses do not infect hosts in another domain of life, and therefore lateral gene transfer is limited (giant DNA viruses might be exceptions). Now there is evidence for lateral gene transfer between eukaryotes and bacteriophages.

Proof of this unusual movement of DNA comes from studies of the obligate intracellular bacteria Wolbachia, which infects 40% of arthropods (pictured). Wolbachia are in turn infected with a bacteriophage called WO; nearly all sequenced Wolbachia genomes contain integrated WO DNA. Analysis of complete WO genome sequences revealed the presence of mutiple eukaryotic genes (link to paper) that comprise about half of the phage genome!

Ten different protein domains were identified in the eukaryotic genes of WO phage with four functions: toxins, host-microbe interactions, host cell suicide, and protein secretion through membranes.

One eukaryotic gene in phage WO is a black widow spider toxin called latrotoxin-CTD. Sequence analysis suggests that the spider toxin gene was transferred to phage WO within a Wolbachia genome (these bacteria are known to infect widow spiders).

It is not surprising that a virus of a bacterium that infects a eukaryotic cell might acquire eukaryotic genes, but the exact mechanism of gene transfer is unknown. Eukaryotic DNA might enter the WO genome while the particles are in the insect cell cytoplasm, or during packaging of viral DNA in the presence of animal DNA. Another possibility is transfer of eukaryotic DNA to the Wolbachia genome, and then to phage WO.

The fact that eukaryotic-like DNA sequences make up half of the phage WO genome suggests that they serve important functions for the virus. The functions ascribed to these eukaryotic genes suggest roles in cell lysis, modification of host proteins, and toxicity.

There are other examples of phage-infected obligate intracellular bacteria of Chlamydia, aphids, and tsetse flies. A study of these viral genomes should reveal whether lateral gene transfer between metazoans and bacteriophages is a common mechansim for augmenting functions of the viral genome.

Filed Under: Basic virology, Information Tagged With: bacteriophage, eukaryote, intracellular symbiont, lateral gene transfer, phage WO, viral, virology, virus, viruses, wolbachia

TWiV 405: All the world’s a phage

4 September 2016 by Vincent Racaniello

The TWiXers discuss a study on vertical transmission of Zika virus by Aedes mosquitoes, and uncovering Earth’s virome by mining existing metagenomic sequence data.

You can find TWiV #405 at microbe.tv/twiv, or listen below.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV405.mp3″]

Click arrow to play
Download TWiV 405 (70 MB .mp3, 117 min)
Subscribe (free): iTunes, RSS, email

Become a patron of TWiV!

Filed Under: This Week in Virology Tagged With: aedes aegyptii, Aedes albopictus, bacteriophage, bathypelagic, computational biology, mosquito, vertical transmission, viral, virology, virome, virus, viruses, zika virus

  • « Go to Previous Page
  • Go to page 1
  • Interim pages omitted …
  • Go to page 3
  • Go to page 4
  • Go to page 5
  • Go to page 6
  • Go to page 7
  • Interim pages omitted …
  • Go to page 11
  • Go to Next Page »

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.