• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

avian influenza H5N1

H5N1 – It’s All About the Transmission

2 March 2023 by Gertrud U. Rey

by Gertrud U. Rey

Recent news headlines have been highlighting the global spread of H5N1, the strain of influenza virus that is typically associated with “bird flu.” This outbreak is the largest in recorded history, involving at least 50 million dead birds and countless non-human mammals, including sea lions, otters, mink, foxes, cats, dogs, and skunks. But what does this mean for us?

Although the virus has so far infected about 1,000 people worldwide, most of these infections have been in individuals who had direct contact with infected birds, and thus, the infections likely originated from those animals. There is currently no evidence to suggest that H5N1 can transmit efficiently from one person to another, a factor that is critical for triggering a human pandemic. As far as we know, there are several obstacles that prevent sustained human-to-human transmission of H5N1.

The first obstacle has to do with the host cell surface receptor that mediates viral entry for influenza virus infection in humans. To enter a cell, human influenza viruses bind receptors that consist of a sialic acid molecule linked to galactose via an alpha 2,6 glycosidic bond, and these receptors are located mostly on cells of the upper respiratory tract. In contrast, avian influenza viruses (including H5N1) preferentially bind sialic acids with an alpha 2,3 linkage (illustrated), which are abundant on cells of the avian digestive tract and cells of the human lower respiratory tract. Although H5N1 can infect and replicate in cells of the lower respiratory tract, its transmission to other humans from the lower respiratory tract is very inefficient, meaning that H5N1-infected people typically do not pass the virus on to others. In other words, because H5N1 cannot efficiently replicate in the upper respiratory tract, it doesn’t typically transmit among humans. In order for H5N1 to pass easily from one person to another, it would at the very least need to acquire an amino acid change that allows it to bind a sialic acid receptor with an alpha 2,6 galactose linkage.

sialic acid

A second obstacle that prevents sustained human-to human transmission of H5N1 influenza virus involves the H5N1 polymerase enzyme, which is responsible for replicating the viral genome. To function properly, this enzyme needs to be in an environment with a temperature of approximately 40℃ – the average temperature of the avian digestive tract. Because the human upper respiratory tract has a temperature range of 33-35℃, the H5N1 polymerase would need to adapt to function in this temperature range in order for H5N1 to replicate and transmit more effectively from this site.

A third obstacle relates to the pH inside the membrane vesicle that forms around a viral particle once it enters a host cell. This vesicle, called an “endosome,” transports the viral particle through the cytoplasm until the viral and endosomal membranes fuse to allow the viral RNA to enter the host cell cytoplasm. Human-adapted influenza viruses undergo this membrane fusion most efficiently in the low pH conditions of the endosomes of human cells. However, H5N1 viruses require a much higher pH for fusion, meaning that they could easily degrade in the low pH environment of the human endosome, and thus not produce an effective infection that could transmit virus to other humans.

The segmented structure of the influenza virus genome allows for frequent reassortment between segments, such that if a host cell is co-infected with two different strains of influenza virus, the segments can reassort to produce new virus strains. Pigs are susceptible to infection by both avian and human influenza viruses, making them likely mixing vessels for such reassortment events. Reassortment between the “right” influenza virus genes could lead to a new version of H5N1 that could infect and transmit from cells of the human upper respiratory tract, thus triggering efficient human-to-human transmission and a potential pandemic.  

Fortunately, many scientists are preparing for such a scenario by developing H5N1-specific diagnostic tools, antiviral drugs, and vaccines. For example, virologist Scott Hensley and colleagues have generated a highly promising monovalent mRNA vaccine that completely matches the currently circulating strain of H5N1. So far, the vaccine produces great antibody responses in mice, but it still needs to be tested in ferrets, and then obviously, humans. There are also many other research groups working on both H5N1-specific and multivalent influenza virus vaccines directed against all known influenza virus subtypes.

There is no way to predict if and when H5N1 will evolve so it can pass easily between humans, although the probability for such a phenomenon is as real as the recent emergence of SARS-CoV-2. Considering that the mortality rate from H5N1 infection in humans is estimated to be higher than 50%* (compared to less than 1% from SARS-CoV-2), the consequences of a potential H5N1 pandemic would be a lot worse than those of the present pandemic. The fact that H5N1 already appears to transmit fairly well between non-human mammals as evidenced by an outbreak on a Spanish mink farm is highly concerning. The current H5N1 outbreak warrants increased surveillance and preparedness, and it further highlights the importance of a comprehensive One Health approach for detecting and controlling pandemic threats.

*This estimate by the World Health Organization likely does not take into account the total number of infections, which is probably much higher than we think. A higher number of total infections would decrease the rate of mortality.

[A big thank you to Joanna Pulit-Penaloza for the useful discussions, which helped me clarify some of the concepts in this post.]

Filed Under: Basic virology, Gertrud Rey Tagged With: avian influenza H5N1, bird flu, Flu, H5N1, human-to-human transmission, influenza, lower respiratory tract, pandemic, sialic acid, transmission, upper respiratory tract, vaccine

TWiV 291: Ft. Collins abuzz with virologists

29 June 2014 by Vincent Racaniello

Vincent, Rich, and Kathy and their guests Clodagh and Ron recorded episode #291 of the science show This Week in Virology at the 33rd annual meeting of the American Society for Virology at Colorado State University in Ft. Collins, Colorado.

You can find TWiV #291 at www.microbe.tv/twiv.

Filed Under: This Week in Virology Tagged With: adenovirus, airborne transmission, american society for virology, asv, avian influenza H5N1, Colorado State University, ferret, oncoprotein, pandemic, polymer, transformation, viral, virology, virus

TWiV 287: A potentially pandemic podcast

1 June 2014 by Vincent Racaniello

On episode #287 of the science show This Week in Virology, Matt Frieman updates the TWiV team on MERS-coronavirus, and joins in a discussion of whether we should further regulate research on potentially pandemic pathogens.

You can find TWiV #287 at www.microbe.tv/twiv.

Filed Under: This Week in Virology Tagged With: aerosol transmission, avian influenza H5N1, coronavirus, ferret, fouchier, gain of function, kawaoka, laboratory accident, MERS-CoV, Middle East respiratory syndrome, Nuremberg, pandemic, SARS, viral, virology, virus

Fouchier vs the Dutch government on influenza H5N1 research

27 September 2013 by Vincent Racaniello

ferretFrom Martin Enserink at ScienceInsider:

Virologist Ron Fouchier has suffered a loss in a legal battle with the Dutch government over the publication of his controversial H5N1 influenza research. On Friday, a Dutch district court ruled that the government was right to ask Fouchier to obtain an export license before sending two hotly debated papers out for publication.

Readers of this blog will remember the furor sparked by Fouchier’s experiments in 2011 in which he developed an avian influenza H5N1 isolate that could transmit among ferrets by aerosol. When Fouchier was ready to publish the results, the Dutch government required that Fouchier apply for an export license. In so doing they were applying EU regulations that are designed to prevent the spread of biological weapons.

Fouchier applied for and was granted an export license on 27 April 2012. Fouchier’s employer, Erasmus Medical Center, appealed the decision to require an export license for this type of work. It is this appeal that was recently denied by a Dutch district court.

Fouchier rightfully claims that such EU regulations put him at a disadvantage compared with other groups. For example, Kawaoka’s findings on aerosol-transmitted avian influenza H5N1 virus in ferrets were not subject to EU export rules and were published ahead of Fouchier’s paper. I can understand Fouchier’s position; science is very competitive and being the first to publish is a coveted position. I am not sure that this is an issue worth bringing to the courts: even though Fouchier published after Kawaoka, most virologists credit the observations to both laboratories. The Dutch government should recognize that its scientists must be internationally competitive and expedite such future requests.

In my view, there is a larger issue at stake here: what constitutes research that requires an export license? I would argue that the avian influenza H5N1 virus that Fouchier produced is not a biological weapon. Remember that while this virus could transmit among caged ferrets by aerosol, it was markedly attenuated. In other words, gaining the ability to transmit by aerosol came at a fitness cost that reduced the virulence of the virus in ferrets. Such a virus is not a biological weapon, and should not have been subject to EU export requirements.

I do not know who in the Dutch government reviews such export license requests, but hopefully the next time Fouchier or any other virologist applies, there will be knowledgeable virologists involved in making the correct decision.

Filed Under: Basic virology, Commentary, Information Tagged With: aerosol, avian influenza H5N1, biological weapon, Erasmus MC, export license, ferret, fouchier, transmission, viral, virology, virus

Further defense of the Chinese H1N1 – H5N1 study

17 May 2013 by Vincent Racaniello

Robert Herriman of The Global Dispatch interviewed me this week on the H1N1 – H5N1 reassortant study that has been in the headlines:

There was much written concerning the research published earlier this month in Science, where researchers from China’s Harbin Veterinary Research Institute reported creating an  avian H5N1 (highly pathogenic) and pandemic 2009 H1N1 (easily transmissible) hybrid, that according to them, achieved airborne spread between guinea pigs.

Read the rest of the article at The Global Dispatch.

Filed Under: Basic virology, Information Tagged With: aerosol transmission, avian influenza H5N1, ferret, guinea pig, H1N1, reassortant, viral, virology, virus

Ferreting out the truth on Science Sunday Hangout on Air

14 May 2013 by Vincent Racaniello

I joined Buddhini Samarasinghe, Scott Lewis, Tommy Leung, and William McEwan for a discussion of the avian influenza H5N1 virus transmission experiments done in ferrets.

 

Filed Under: Basic virology, Information Tagged With: aerosol transmission, avian influenza H5N1, bioterrorism, ferret, fouchier, kawaoka, pandemic, viral, virology, virus

  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Go to Next Page »

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.