• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

assembly

Blocking rhinovirus infection by inhibiting a cell enzyme

7 June 2018 by Vincent Racaniello

N-terminal myristoylation
N-terminal myristoylation. An amide bond links myristate to an N-terminal glycine in the myristoylation site consensus sequence.

The common cold is an infection of the upper respiratory tract that may be caused by many different viruses, but most frequently by rhinoviruses. A compound that inhibits a cell enzyme and blocks rhinovirus replication has the potential to be developed into an antiviral drug (link to paper).

[Read more…] about Blocking rhinovirus infection by inhibiting a cell enzyme

Filed Under: Basic virology, Information Tagged With: antiviral drug, assembly, common cold, myristic acid, rhinovirus, viral, virology, virus, viruses

Virology lecture #11: Assembly

1 March 2010 by Vincent Racaniello


Download: .wmv (354 MB) | .mp4 (104 MB)

Visit the virology W3310 home page for a complete list of course resources.

Filed Under: Basic virology, Information Tagged With: assembly, budding, columbia university, videocast, viral, virology, virology course, virus, w3310

Assembly of influenza virus

19 May 2009 by Vincent Racaniello

Our discussion of influenza virus replication has so far brought us to the stage of viral RNA synthesis. Last time we discussed the formation of viral RNAs, an event which takes place in the cell nucleus. Now we’ll consider how these RNAs participate in the assembly of new infectious viral particles, as illustrated in the following figure.

influenza-assembly

For simplicity, the nucleus is not shown. But remember that the viral RNAs have to be exported from the nucleus to the cytoplasm, where viral assembly occurs. First, the viral mRNAs are translated to produce all the proteins needed to synthesize a new virus particle. The mRNAs encoding the HA and NA glycoproteins are translated by ribosomes that are bound the the endoplasmic reticulum – the membranous organelle that assists in transporting certain proteins to the plasma membrane. As the HA and NA proteins are produced, they are inserted into the membrane of the endoplasmic reticulum as shown. These proteins are then transported to the cell surface via small vesicles that eventually fuse with the plasma membrane. As a result, the HA and NA are inserted in the correct direction in the lipid membrane of the cell. The M2 protein is sent to this location in a similar way.

The (-) strand viral RNAs that will be packaged into new virus particles are produced in the cell nucleus, then exported to the cytoplasm. These RNAs are joined with the viral proteins PA, PB1, PB2, and NP. Viral proteins other than HA, NA, and M2 are produced by translation on free ribosomes, as shown for M1. The latter protein binds to the membrane where HA, NA, and M2 have been inserted. The assembly consisting of viral RNAs and viral proteins – called a ribonucleoprotein complex or RNP -  travels to the site of assembly. The virion then forms by a process called budding, during which the membrane bulges from the cell and is eventually pinched off to form a free particle.

As new virions are produced by budding, they would immediately bind to sialic acid receptors on the cell surface, were it not for the action of the viral NA glycoprotein. This enzyme removes sialic acids from the surface of the cell, so that newly formed virions can be released. This requirement explains how the neuraminidase inhibitors Tamiflu and Relenza function: they prevent cleavage of sialic acid from the cell surface. In the presence of these inhibitors, virions bud from the cell surface, but they remain firmly attached. Therefore Tamiflu and Relenza block infection by preventing the spread of newly synthesized virus particles to other cells.

Filed Under: Information Tagged With: assembly, budding, H1N1, influenza, neuraminidase, pandemic, relenza, swine flu, tamiflu, viral, virology, virus

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.