• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

antiviral compound

Kermit’s urumi

27 July 2017 by Vincent Racaniello

Hydrophylax bahuvistaraFrogs don’t get flu (as far as I know) but their skin contains a peptide that inhibits the replication of influenza virus (link to paper).

Frog skin contains host defense peptides (HDPs), part of the innate immune defenses of many species. They were first found in amphibians by Michael Zasloff, who, as part of his research, performed surgery on frogs and then returned them to an aquarium – which was not sterile. He wondered why the frogs always healed without signs of infection, which lead him to discover the antimicrobial peptides, called magainins, in frog skin. HDPs had been first discovered years earlier in the silk moth.

Amphibian HDPs are active against bacteria, fungi, viruses, and protozoa. To discover HDPs that inhibit influenza virus, 32 HDPs from skin secretions of the Indian frog Hydrophylax bahuvistara were screened by mixing them with virus followed by a plaque assay. One peptide was found to potently inhibit influenza virus replication without cell toxicity. It was called urumin, after the whip sword known as urumi.

Urumin inhibits infectivity of influenza H1N1 viruses far better than H3N2 viruses. The reason is that the peptide targets the viral H1 hemagglutinin, one of two glycoproteins in the viral envelope. Furthermore, the peptide appears to interact with the conserved stalk region of the HA glycoprotein, and not with the globular head.

Currently two different antiviral drugs, oseltamivir and relenza, are used to control influenza virus infection. Viruses resistant to these drugs were still inhibited by urumin, indicating that should urumin ever be licensed, it would be useful in the event that oseltamivir and relenza resistant viruses became more common.

Examination of urumin treated virus particles by electron microscopy revealed that they are disrupted by the peptide. How urumin breaks influenza virus particles is not known. However, the HDP nisin destroys bacteria by first binding to a bacterial membrane component, then moving into the membrane. After binding to HA, urumin might in a simlar way disrupt the membrane of influenza virus particles.

Urumin also reduced disease, death, and the amount of virus in the lung in mice intranasally infected with influenza virus.

These observations suggest that urumin is worthy of additional study as an influenza virus inhibitor. HDPs are attractive antimicrobial compounds because resistance to their mechanisms of action is lower than for other types of inhibitors. However, enthusiasm for urumin is dampened because, despite extensive study, no HDP has yet been approved by the US Food and Drug Administration for use in humans. The obstacles to therapeutic success of HDPs have not been identified.

Filed Under: Basic virology, Information Tagged With: amphibian, antiviral compound, defensin, HDP, host defense peptide, influenza virus, magainin, urumin, viral, virology, virus, viruses

A promising Ebolavirus antiviral compound

3 March 2016 by Vincent Racaniello

ATP EBOV antiviralA small molecule antiviral compound has been shown to protect rhesus monkeys against lethal Ebolavirus disease, even when given up to three days after virus inoculation.

The compound, called GS-5734, is a nucleoside analog. After uptake into cells, GS-5734 is converted to a nucleoside triphosphate (illustrated, bottom panel) which is incorporated by the viral RNA dependent RNA polymerase as it copies the viral genome. However, the nucleoside is chemically different from ATP (illustrated, top) and no further nucleotides can be incorporated into the growing RNA strand. RNA synthesis ceases, blocking production of infectious virus particles.

In cell culture GS-5734 inhibits viral replication at micromolar concentrations, in a variety of human cell types including monocyte-derived macrophages, primary macrophages, endothelial cells, and a liver cell line. The drug inhibits replication of several strains of Zaire ebolavirus, including Kikwit and Makona (from the West African outbreak); Bundibugyo ebolavirus, and Sudan ebolavirus. It also inhibits replication of another filovirus, Marburg virus, as well as viruses of different families, including respiratory syncytial virus, Junin virus, Lassa fever virus, and MERS-coronavirus, but not chikungunya virus, Venezuelan equine encephalitis virus, or HIV-1.

The RNA dependent RNA polymerase of Ebolaviruses has not yet been produced in active form, so the authors determined whether GS-5734 inhibits a related polymerase from respiratory syncytial virus. As predicted, the compound was incorporated into growing RNA chains by the enzyme, and caused premature termination.

Typically tests of antiviral candidates begin in a small animal, and if the results are promising, proceed to nonhuman primates. While a mouse model of Ebolavirus infection is available, the serum from these animals degrades GS-5374. Consequently a rhesus monkey model of infection was used to test the compound.

After intravenous administration of GS-5374, the NTP derived from it was detected in peripheral blood mononuclear cells, testes, epididymis, eyes, and brain within 4 hours. All 12 monkeys inoculated intramuscularly with Zaire ebolavirus died by 9 days post-infection. In contrast, all animals survived after administration of GS-5374 2 or 3 days after virus inoculation. These animals also had reduced virus associated pathology as measured by liver enzymes in the blood and blod clotting. Viral RNA in serum reaches 109 copies per milliliter on days 5 and 7 in untreated animals, and was undetectable in 4 of 6 treated animals.

It is likely that resistant viruses can be obtained by passage in the presence of GS-5734; whether such mutant viruses emerge early in infection, and at high frequency, is an important question that will impact clinical efficacy of the drug. The authors did not detect changes in the viral RNA polymerase gene that might be assoicated with resistance, but further work is needed to address how readily such mutants arise.

These promising results have lead to the initiation of a phase I clinical trial to determine whether GS-5734 is safe to administer to humans, and if the drug reaches sites where Ebolaviruses are known to replicate. However, determining the efficacy of the compound requires treatment of acutely Ebolavirus infected humans, of which there are none. It might be of interest to determine the ability of GS-5734 to clear persistent virus from previously infected individuals.

You can bet that GS-5734 has already been tested for activity against Zika virus.

Filed Under: Basic virology, Information Tagged With: antiviral compound, chain terminator, ebolavirus, nucleoside analog, RNA polymerase, rna synthesis, viral, virology, virus, viruses

Blocking virus infection with soluble cell receptors

5 March 2015 by Vincent Racaniello

poliovirus + receptorWe recently discussed the development of a soluble receptor for HIV-1 that provides broad and effective protection against infection of cells and of nonhuman primates. Twenty-five years ago my laboratory published a paper which concluded that using soluble receptors to block virus infection might not be a good idea. In the first paragraph of that paper we wrote:

…it has been proposed that soluble cell receptors might be effective antiviral therapeutics. It has been suggested that mutants resistant to the antiviral effects of soluble receptors would not arise, because mutations that abrogate binding to receptors would be lethal.

We had previously shown that the cell receptor for poliovirus, CD155, produced in a soluble form, would bind to poliovirus (pictured – the very image from the banner of this blog), blocking viral infection. We then found that it was relatively easy to select for soluble receptor resistant (srr) virus mutants. These viruses still enter cells by binding to CD155, but the affinity of virus for the receptor is reduced. Poliovirus srr mutants replicate normally in cell cultures, and cause paralysis in a mouse model for poliomyelitis. We speculated that receptor binding might not be a rate-limiting step in viral infection, and short of  abolishing binding, the virus can tolerate a wide range of binding capabilities.

The amino acid changes that cause the srr phenotype map to both the exterior and the interior of the viral capsid. The changes on the virion surface are likely to directly interact with the cell receptor. Changes in the interior of the virus particle may be involved in receptor-mediated conformational transitions that are believed to be essential steps in viral entry.

When this work was done, clinical trials of soluble CD4 for HIV-1 infection were under way. We believed that our findings did not support the use of soluble receptors as antivirals, which we clearly stated in the last sentence of the paper:

These findings temper the use of soluble receptors as antiviral compounds.

HIV-1 mutants resistant to neutralization with soluble CD4 were subsequently isolated, and the compound was never approved to treat HIV-1 infection in humans for this and other reasons, including low affinity for the viral glycoprotein, enhancement of infection, and problems associated with using a protein as a therapeutic.

Recently a new soluble CD4 was produced which also includes the viral binding site for a second cell receptor, CCR5. This molecule overcomes many of the issues inherent in the original soluble CD4. It provides broad protection against a wide range of HIV-1 strains, and when delivered via an adenovirus-associated virus vector, protects nonhuman primates from infection. This delivery method circumvents the issues inherent in using a protein as an antiviral drug. Because this protein blocks both receptor binding sites on the viral envelope glycoprotein, it might be more difficult for viruses to emerge that are resistant to neutralization. The authors speculate that such mutants might not be efficiently transmitted among hosts due to defects in cell entry. Given the promising results with this antiviral compound, experiments to test this speculation are certainly welcome.

Filed Under: Basic virology, Information Tagged With: aav, adenovirus associated virus vector, antiviral compound, CCR5, CD4, cell receptor, HIV-1, immunoadhesin, soluble receptor resistant mutant, viral, virology, virus

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.