• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

animal model

You Don’t Need the Whole Antibody

1 October 2020 by Gertrud U. Rey

by Gertrud U. Rey

Antibodies are large proteins that are made by B cells of the adaptive immune system. Most people think that antibodies function only as a whole molecule, but some of the individual fragments of an antibody can also bind and neutralize antigens. 

An antibody consists of two heavy chains and two light chains that assemble into a Y-shaped structure (left side of Figure). The stem of the Y is known as the “fragment crystallizable” (Fc) portion and is composed of two heavy chains. The two arms of the Y are known as the “fragment antigen-binding” (Fab) portions and are each composed of one heavy chain and one light chain. As its name suggests, the top half of each Fab fragment is the antigen-binding region of the antibody, and it is variable – meaning that it varies between antibodies that are produced by different B cells. The bottom half of each Fab fragment and the entire Fc region are constant, meaning that they are identical in all antibodies of the same isotype, but differ in antibodies of different isotypes. For example, the constant regions are identical in all IgG antibodies but differ between IgG and IgA antibodies. 

In an effort to identify anti-SARS-CoV-2 antibodies suitable for preventing and treating SARS-CoV-2 infection, the authors of a recent publication screened 100 billion different anti-SARS-CoV-2 antibody candidates for their ability to bind and/or neutralize SARS-CoV-2. This eventually led to the discovery of “ab8,” an antibody fragment consisting of a variable heavy (VH) region and having particularly potent SARS-CoV-2 binding specificity and neutralization activity. To increase the binding avidity of ab8 (i.e., the stability of its interaction with an antigen) and extend its longevity in the human body, the authors fused this fragment to the Fc domain of human IgG1, an abundant and stable type of human antibody. This produced the molecule hereinafter referred to as “VH-Fc ab8″ (right side of Figure).  

The authors found that VH-Fc ab8 can bind various conformations of the SARS-CoV-2 spike protein, including when the spike protein is bound to a cell surface. VH-Fc ab8 can also bind to and neutralize six different SARS-CoV-2 isolates having different amino acid changes in the receptor-binding domain, suggesting that it is broadly cross-reactive. Notably, it does not bind to human cells, meaning that it does not seem to interfere with normal cellular functions.

As a next step, the authors evaluated the ability of VH-Fc ab8 to prevent SARS-CoV-2 infection in mice. If given to mice before they were infected with SARS-CoV-2, VH-Fc ab8 inhibited viral replication at all doses tested, but it only neutralized virus at the highest dose of 36 mg/kg. Although these results were encouraging, it is often difficult to interpret data obtained in mice in terms of clinical relevance in humans, because mice don’t develop the COVID-19-related disease pathologies observed in humans. Hamsters more closely imitate human SARS-CoV-2 infection in the lung, suggesting that they could be a useful mammalian model for COVID-19. VH-Fc ab8 caused significantly reduced levels of infectious virus in the lung, nasal mucosa, and saliva of hamsters when administered one day before (i.e., “prophylactically”) or six hours after SARS-CoV-2 infection (i.e., “therapeutically”) compared to untreated control animals, suggesting that it could be used to both prevent and treat SARS-CoV-2 infection. Although VH-Fc ab8 led to greater reduction of virus levels when given prophylactically than when given therapeutically, therapeutic administration still led to significantly decreased viral loads in treated animals compared to untreated control animals, even at very low doses. VH-Fc ab8 not only alleviated pneumonia and reduced lung viral loads in hamsters, but it also reduced virus shedding in the upper airway, which could help with reducing transmission. 

The authors also found that when they gave hamsters the same dose of either VH-Fc ab8 or IgG1 ab1 – a full-sized version of the antibody, and then examined their concentrations in the serum five days later, levels of VH-Fc ab8 were significantly higher than those of the full-sized antibody. This suggests that the systemic distribution of VH-Fc ab8 is more long-lived than that of a full-sized antibody. 

Although small animal models can provide key insights into the pathogenic mechanisms of viral infections, they are often poor predictors of human disease outcomes. The therapeutic timeline followed in the hamster experiments (i.e., administration of VH-Fc ab8 six hours after infection) would also be difficult to reproduce in humans because therapeutic drugs are not usually administered until well after symptom onset. Therefore, it would be difficult to determine whether the therapeutic effect of VH-Fc ab8 observed in hamsters would be the same in humans. 

That being said, there are clear advantages to using antibody fragments instead of whole antibodies. Their small size allows them to penetrate more efficiently to sites of infection and bind antigens more easily and with more specificity. Smaller molecules also diffuse more easily through tissues, meaning that they could be administered by routes other than injection, such as by inhalation. Furthermore, because the molecular weight of VH-Fc ab8 is only about half that of a full-sized antibody, smaller quantities would be needed to obtain the same number of molecules, meaning that antibody fragment therapeutics could be more easily mass-produced. 

There is no question that we are in dire need of an effective therapeutic drug to treat SARS-CoV-2 infection. If the results observed in these animal experiments can be duplicated in humans, VH-Fc ab8 would be an attractive option for both treating and preventing SARS-CoV-2 infection. 

Filed Under: Gertrud Rey, Uncategorized Tagged With: animal model, antibody, Fab fragment, Fc fragment, fragment, heavy chain, molecule, neutralizing, prophylactic, protein, SARS-CoV-2, therapeutic, treatment

Ebola virus mutations do not affect pathogenicity

10 May 2018 by Vincent Racaniello

EbolavirusSeveral mutations that arose during the 2013-2016 outbreak of Ebola virus in West Africa were previously found to increase infectivity for human cells. However, a study in two animal models show no effect of these mutations on disease.

Among the many mutations identified among the hundreds of genome sequences obtained during the 2013-2016 Ebola virus epidemic, a change from alanine to valine at position 82 (A82V) that arose early in the outbreak was found to increase infectivity in human cells of HIV particles with the Ebola virus glycoprotein. The authors suggested that this change might have been in part responsible for the extent and severity of the outbreak. [Read more…] about Ebola virus mutations do not affect pathogenicity

Filed Under: Basic virology, Commentary, Information Tagged With: animal model, ebola virus, EBOV, Makona, mutation, transmission, viral, virology, virulence evolution, virus, viruses

A Lot of Buzz Around STING

29 March 2018 by Gertrud U. Rey

By Gertrud U. Rey

Gertrud Rey is a trained virologist residing in Atlanta, Georgia. During the day, she works as a consultant in a biotech patent law firm, but spends much of her free time as a science communicator. She was a guest on TWiV 179 and 424.

The lack of a suitable animal model for human dengue virus infection and disease has presented considerable challenges for dengue virus vaccine research.

Chimpanzees, rhesus macaques, and the common marmoset, representing apes, Old World monkeys, and New World monkeys, respectively, have been used as model organisms to study dengue. However, although they are permissive for dengue virus infection, they do not develop overt disease. Having good animal models to understand the interaction between dengue virus and the host innate immune response is particularly important for vaccine development.

[Read more…] about A Lot of Buzz Around STING

Filed Under: Basic virology, Gertrud Rey, Information Tagged With: animal model, dengue virus, innate immunity, interferon, STING, viral, virology, virus, viruses

TWiV 465: Theodora the explorer

29 October 2017 by Vincent Racaniello

Theodora Hatziioannou joins the TWiV team to discuss a macaque model for AIDS, and how a cell protein that blocks HIV-1 infection interacts with double-stranded RNA.

Click arrow to play
Download TWiV 465 (53 MB .mp3, 88 min)
Subscribe (free): iTunes, RSS, email

Become a patron of TWiV!

Show notes at microbe.tv/twiv

Filed Under: This Week in Virology Tagged With: AIDS, animal model, APOBEC3H, CRNA, deamination, dsRNA, HIV-1, pigtail macaque, restriction factor, viral, virology, virus, viruses, X-ray structure

Does prior dengue virus infection exacerbate Zika virus disease?

10 August 2017 by Vincent Racaniello

Antibody dependent enhancementThe short answer to the question posed in the title of this blog is: we don’t know.

Why would we even consider that a prior dengue virus infection would increase the severity of a Zika virus infection? The first time you are infected with dengue virus, you are likely to have a mild disease involving fever and joint pain, from which you recover and develop immunity to the virus. However, there are four serotypes dengue virus, and infection with one serotype does not provide protection against infection with the other three. If you are later infected with a different dengue virus serotype, you may even experience more severe dengue disease involving hemorrhagic fever and shock syndrome.

The exacerbation of dengue virus disease has been documented in people. Upon infection with a different serotype, antibodies are produced against the previous dengue virus encountered. These antibodies bind the new dengue virus but cannot block infection. Dengue virus then enters and replicates in cells that it does not normally infect, such as macrophages. Entry occurs when Fc receptors on the cell surface bind antibody that is attached to virus particles (illustrated). The result is higher levels of virus replication and more severe disease. This phenomenon is called antibody-dependent enhancement, or ADE.

When Zika virus emerged in epidemic form, it was associated with microcephaly and Guillain-Barré syndrome, diseases that had not been previously known to be caused by infection with this virus. As Zika virus and dengue virus are closely related, because ADE was known to occur with dengue virus, and both viruses often co-circulated, it was proposed that antibodies to dengue virus might exacerbate Zika virus disease.

It has been clearly shown by several groups that antibodes to dengue virus can enhance Zika virus infection of cells in culture. Specifically, adding dengue virus antibodies to Zika virus allows it to infect cells that bear receptors for antibodies – called Fc receptors. Without Fc receptors, the Zika virus plus dengue antibodies cannot infect these cells. ADE in cultured cells has been reported by a number of groups; the first was discussed here when it appeared on bioRxiv.

The important question is whether antibodies to dengue virus enhance Zika virus disease in animals, and there the results are mixed. In one experiment, mice were injected with serum from people who had recovered from dengue virus infection, followed by challenge with Zika virus. These sera, which cause ADE of Zika virus in cultured cells, led to increased fever, viral loads, and death of mice.

These finding were not replicated in two independent studies conducted in rhesus macaques (paper one, paper two). In these experiments, the macaques were first infected with dengue virus, and shown to mount an antibody response to that virus. Over one year later the animals were infected with Zika virus (the long time interval was used because in humans dengue ADE is observed mainly with second infections 12 months or more after a primary infection). Both groups concluded that prior dengue virus immunity did not lead to more severe Zika virus disease.

Which animals are giving us the right answer, mice or monkeys? It should be noted that the mouse study utilized an immunodeficient strain lacking a key component of innate immunity. As the authors of paper one concluded, it’s probably not a good idea to use immune deficient mice to understand the pathogenesis of Zika virus infection of people.

When it comes to viral pathogenesis, we know that mice lie; but we also realize that monkeys exaggerate. Therefore we should be cautious in concluding from the studies on nonhuman primates that dengue virus antibodies do not enhance Zika virus pathogenesis.

The answer to the question of whether dengue antibodies cause Zika virus ADE will no doubt come from carefully designed epidemiological studies to determine if Zika virus pathogenesis differs depending on whether the host has been previously infected with dengue virus. Such studies have not yet been done*.

You might wonder about the significance of dengue virus antibodies enhancing infection of cells in culture with Zika virus. An answer is provided by the authors of paper one:

In vitro ADE assays using laboratory cell lines are notoriously promiscuoius and demonstrate no correlation with disease risk. For example, DENV-immune sera will enhance even the homotypic serotype responsible for a past infection in the serum is diluted to sub-neutralizing concentrations.

The conundrum of whether ADE is a contributor to Zika virus pathogeneis is an example of putting the cart before the horse. For dengue virus, we obtained clear evidence of ADE in people before experiments were done in animals. For Zika virus, we don’t have the epidemiological evidence in humans, and therefore interpreting the animals results are problematic.

*Update 8/12/17: A study has been published on Zika viremia and cytokine levels in patients previously infected with dengue virus. The authors find no evidence of ADE in patients with acute Zika virus infection who had previously been exposed to dengue virus. However the study might not have been sufficiently powered to detect ADE.

Filed Under: Basic virology, Commentary, Information Tagged With: animal model, antibody dependent enhancement, dengue virus, Fc receptor, pathogenesis, viral, virology, virus, zika virus

TWiV 422: Watching the icosahedron drop

1 January 2017 by Vincent Racaniello

The TWiVestigators wrap up 2016 with a discussion of the year’s ten compelling virology stories.

You can find TWiV #422 at microbe.tv/twiv, or listen below.

[powerpress url=”http://traffic.libsyn.com/twiv/TWiV422.mp3″]

Click arrow to play
Download TWiV 422 (71 MB .mp3, 117 min)
Subscribe (free): iTunes, RSS, email

Become a patron of TWiV!

Filed Under: This Week in Virology Tagged With: 2016 in review, animal model, ebolavirus, evolution, Harold Varmus, mosquito, mutualism, vaccine, vector, viral, virology, virus, viruses, zika virus

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.