• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

ACE2

Dynamics of SARS-CoV-2 Vaccine-Induced Antibody Immunity

1 July 2021 by Gertrud U. Rey

Gertrud U. Rey

Vaccination against the vaccine-preventable diseases is preferable to natural infection because it prevents illness and the long-term effects associated with many infections; and in most cases, it also leads to better immunity. In the case of immunity induced by SARS-CoV-2 vaccination, it is slowly becoming clear that the immunity is of overall better quality than that induced by COVID-19.

Vaccination leads to production of polyclonal antibodies, which are derived from many different types of B cells and may target many different portions of an antigen (i.e., “epitopes”). Isolation of B cells from a blood sample allows one to artificially produce monoclonal antibodies, which are derived from a single type of B cell and target a single epitope. Using blood samples from 6 SARS-CoV-2 mRNA vaccine recipients and 30 COVID-19 survivors, the authors of a recent publication compared the dynamics of vaccine-induced antibody immunity to those resulting from natural infection. A comparison of total antibodies between the two groups of people revealed that polyclonal antibody levels in vaccinees were generally higher than those in COVID-19 survivors. However, when the authors tested the antibodies from vaccinees for SARS-CoV-2 neutralizing activity, only a minority were neutralizing, including antibodies that target the receptor-binding domain (RBD) on the SARS-CoV-2 spike protein.

To see whether any of the neutralizing antibodies from vaccinees were capable of binding to the RBD, the authors performed competition experiments, where they exposed the antibodies to the SARS-CoV-2 RBD alone, or to RBD pre-mixed with its binding target – the human ACE2 receptor. This experiment revealed that increasing concentrations of ACE2 led to decreased antibody binding, suggesting that the antibodies compete with the ACE2 receptor for binding to the RBD, and that they neutralize the virus by inhibiting its binding to ACE2.

A plasmablast is a type of B cell that differentiates from an immature B cell into a mature plasma cell, which can produce large amounts of a specific antibody. Although they are short-lived, plasmablasts also make antibodies, and are typically abundant and easy to isolate from peripheral blood. Analysis of monoclonal antibodies produced from the plasmablasts of vaccinated individuals showed that a substantial number of these antibodies also bound the N-terminal domain of the SARS-CoV-2 spike protein in addition to the RBD, suggesting that these two epitopes co-dominate as antibody targets.

“Original antigenic sin” is a phenomenon initially discovered with influenza viruses, where the immune system mounts the strongest response to the first version of one particular antigen encountered (i.e., the first virus variant with which one is infected in life). Similar observations have been made in the context of COVID-19, with natural SARS-CoV-2 infection purportedly also substantially boosting antibodies against seasonal β-coronaviruses OC43 and HKU1. To see if SARS-CoV-2 vaccination produces a similar effect, the authors analyzed the specificity of antibodies isolated from vaccine recipients before and after vaccination against the spike protein of α-coronaviruses 229E and NL63 and β-coronaviruses OC43 and HKU1. Although vaccination did not increase titers of pre-existing antibodies against 229E and NL63 viruses, it did increase titers against OC43 and HKU1, consistent with what happens during natural SARS-CoV-2 infection. These results suggest that some of the vaccine-induced antibody responses may be biased by pre-existing immunity to other circulating human β-coronaviruses.

The authors also determined whether plasmablast-derived monoclonal antibodies and polyclonal antibodies from the sera of COVID-19 survivors and vaccinated individuals could bind to the RBDs of different SARS-CoV-2 variants. Although complete loss of binding was rare, antibodies from COVID-19 survivors varied widely in their ability to bind to different variants. Antibodies isolated from vaccinees varied less, depending on the variant. However, for most plasmablast-derived monoclonal antibodies from vaccinees, there was no impact on binding to RBDs in the binding assay used, regardless of the variant.

This study raises several interesting points. First, the ability of SARS-CoV-2 vaccination to boost pre-existing antibodies against HKU1 and OC43 supports the premise for a universal β-coronavirus vaccine, several of which are already in development. Second, the ability of the RBD and N-terminal domain to co-dominate in eliciting spike-specific antibodies justifies the use of vaccines containing the entire spike protein, rather than just the RBD. Third, although it is surprising that vaccination induced so few neutralizing antibodies, the role of non-neutralizing antibodies in protection against disease and infection is currently unknown. Considering that vaccination is obviously so protective against disease and asymptomatic infection, the authors speculate that the antibodies induced by vaccination could have protective functions outside of neutralization. Lastly, the fact that vaccination-induced antibodies fluctuate little, if at all, in their ability to bind the RBDs of different variants compared to antibodies induced by natural infection, suggests that vaccination is more likely to protect from different variants than natural infection. Collectively, these findings further highlight the importance of vaccination for ending this pandemic.

Filed Under: Basic virology, Gertrud Rey Tagged With: ACE2, b cells, COVID-19, β-coronaviruses, monoclonal antibody, N-terminal domain, natural infection, neutralizing antibody, plasmablast, polyclonal antibodies, RBD, SARS-CoV-2, SARS-CoV-2 variant, spike protein, vaccine

TWiV 690: This is your brain on SARS-CoV-2

6 December 2020 by Vincent Racaniello

TWiV reviews the difficulties in predicting species susceptibility to SARS-CoV-2 infection by only examining the ACE2 protein, and the olfactory mucosa as a portal of entry into the central nervous system in COVID-19 patients.

Click arrow to play
Download TWiV 690 (71 MB .mp3, 120 min)
Subscribe (free): iTunes, Google Podcasts, RSS, email

Become a patron of TWiV!

Show notes at microbe.tv/twiv

Filed Under: This Week in Virology Tagged With: ACE2, central nervous system, coronavirus, COVID-19, mink, neurotropic, olfactory mucosa, pandemic, SARS-CoV-2, species specificity, spike glycoprotein, viral, virology, virus, viruses

TWiV 675: Forget what you’ve herd about immunity

26 October 2020 by Vincent Racaniello

Daniel Griffin provides a clinical report on COVID-19, then we discuss Bill Foege’s letter to CDC director Robert Redfield, the false promise of herd immunity for COVID-19, secret blueprints for SARS-CoV-2 vaccine trials released, and neuropilin-1 as a possible entry protein for the virus.

Click arrow to play
Download TWiV 675 (105 MB .mp3, 174 min)
Subscribe (free): iTunes, Google Podcasts, RSS, email

Become a patron of TWiV!

Show notes at microbe.tv/twiv

Filed Under: Commentary, This Week in Virology Tagged With: ACE2, coronavirus, COVID-19, entry protein, neuropilin, pandemic, SARS-CoV-2, vaccine, viral, virology, virus, viruses

TWiV 626: Ralph Baric and fancy ferrets

16 June 2020 by Vincent Racaniello

Daniel Griffin provides a clinical update on COVID-19, then Ralph Baric joins TWiV to discuss SARS-CoV-2 transmission, vaccines, diagnostic tests, and a new animal model from his laboratory that does not use transgenic mice.

Click arrow to play
Download TWiV 626 (98 MB .mp3, 163 min)
Subscribe (free): iTunes, Google Podcasts, RSS, email

Become a patron of TWiV!

Show notes at microbe.tv/twiv

Filed Under: This Week in Virology Tagged With: ACE2, coronavirus, COVID-19, mink, mouse adapted virus, mouse model, pandemic, SARS-CoV-2, transmission, vaccine, viral, virology, virus, viruses

A mouse model for COVID-19

28 May 2020 by Vincent Racaniello

coronavirus Spike

Small animal models (mice, ferrets, hamsters) are essential for understanding how SARS-CoV-2 causes disease and for pre-clinical evaluation of vaccines and antiviral therapeutics. One promising model has been developed by modifying SARS-CoV-2 so that it binds to murine ACE2.

Laboratory mice cannot be infected with SARS-CoV-2 because the viral spike glycoprotein (illustrated) does not bind to murine ACE2, the ortholog of the human receptor. Mice transgenic for the human ACE2 gene, produced after the SARS-CoV outbreak, can be infected with SARS-CoV-2, but the pathogenesis does not resemble that observed in humans. For example, mortality in infected mice appears to be a consequence of replication in the central nervous system, not in the respiratory tract. The altered pathogenesis might be due to improper expression patterns of the ACE2 gene.

In another approach to producing a mouse model for COVID-19, the spike glycoprotein of SARS-CoV-2 was modified so that it efficiently binds murine ACE2 protein. Only two amino acid changes in the S protein were required to allow infection of cells that produce murine ACE2 without affecting reproduction in monkey cells.

Upon intranasal infection of young mice, virus replication was detected in the upper and lower airways and was accompanied by mild to moderate disease. In contrast, after inoculation of older mice, viral replication was not only detected in the upper and lower tract but was associated with lung inflammation and loss of pulmonary function. The age-dependency of disease mimics what is observed in humans.

As a proof of principle, the mouse model was used to evaluate efficacy of a vaccine and antiviral. After vaccination of mice with a Venezuelan equine encephalitis vector carrying the SARS-CoV-2 spike protein gene, reduced virus replication in lung and upper respiratory tract was observed after challenge compared with control mice. Furthermore, prophylactic and therapeutic administration of IFN-lambda-1 reduced virus titers in the lung compared with untreated mice.

This mouse model is attractive because it does not require the development of genetically altered animals. However it is not a perfect model because there are likely differences in tissue distribution of ACE2 in mice and humans which could affect disease outcomes. Whether this difference has an impact on the usefulness of the mouse model remains to be seen. Meanwhile other mouse models are being developed which might have other advantages: for example the production of human ACE2 in mice by using adenovirus-associated virus vectors.

Filed Under: Uncategorized Tagged With: ACE2, antiviral, coronavirus, COVID-19, mouse model, SARS-CoV-2, spike glycoprotein, vaccine, viral, virology, virus, viruses

Cigarette smoke and COVID-19

21 May 2020 by Vincent Racaniello

CoV2-cigaretteSome evidence suggests that cigarette smokers are more likely to develop severe COVID-19 disease than non-smokers. Chronic smoke exposure appears to trigger the expansion of cell types in the respiratory tract that produce ACE2, the receptor for SARS-CoV-2. This observation provides a plausible hypothesis to explain why cigarette smokers might experience more severe COVID-19.

A number of independent observations show that cigarette smoke increases expression of the ACE2 gene:

  • Mice exposed to cigarette smoke daily for 5 months had up to 80% more ACE2 expression in the lung compared with control mice
  • Human lung epithelial cells from the bronchi of smokers had 30-55% more ACE2 expression than cells from non-smokers
  • Lung samples from patients who smoked more than 80 pack-years had 100% more ACE2 expression than those who smoked less than 20 pack-years
  • Quitting smoking was associated with a 40% decrease in ACE2 expression
  • In murine and human lung, ACE2 is expressed at high levels in secretory and goblet cells and alveolar type 2 cells. Chronic smoke exposure leads to expansion of mucus-secreting goblet cells, and consequently higher levels of ACE2.

There are two caveats to this study. In the observations listed above, ACE2 expression was assessed by quantifying RNA, not protein. While the authors show a correlation between ACE2 RNA and protein in selected cell lines, the same correlation might not extend to tissues. In other words, increased ACE2 RNA might not lead to increased ACE2 protein.

An important question not considered by the authors is how increased levels of ACE2 would lead to more severe COVID-19. One explanation is that the effect is mediated by increased susceptibility of cells to infection: more ACE2, more virus produced. Whether this situation holds true is unknown, as experiments to address it have not been done. Another issue is that severe COVID-19 typically occurs after a few weeks of virus multiplication in the upper tract, and is accompanied by decreasing viral loads in the respiratory tract. Furthermore, how increased ACE2 might affect the immune imbalance that contributes to severe disease is not known.

These observations make it clear that cigarette smoke increases ACE2 expression; however they do not provide an explanation for how smoking might exacerbate COVID-19. Despite this uncertainty, there are many other good reasons not to smoke cigarettes.

Filed Under: Basic virology, Information Tagged With: ACE2, cigarette smoke, coronavirus, COVID-19, pandemic, SARS-CoV-2, viral, virology, virus, viruses

  • « Go to Previous Page
  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Go to Next Page »

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.