• Skip to main content
  • Skip to primary sidebar
virology blog

virology blog

About viruses and viral disease

SARS-CoV-2 – The vaccine landscape

11 March 2020 by Vincent Racaniello

by Helen Stillwell

Helen is a research associate in David Hafler’s immunobiology lab at Yale University; previously, she worked on poxviruses at Tonix Pharmaceuticals, and she plans to apply to PhD programs in virology this year.

Is there a vaccine for SARS-CoV-2? The internet is awash with articles and posts seeking to shed light on this very question.

Currently, there is no approved vaccine against SARS-CoV-2. While several companies have announced vaccine candidates in development, it is still unlikely that a vaccine will play a significant role in the current outbreak.

In the US, vaccine candidates cannot proceed through the appropriate preclinical, clinical, regulatory, and manufacturing pipelines in a mere few weeks. Typically, under non-outbreak circumstances, vaccine development can cost up to $1 billion or more, and it often takes many years to reach approval (Dunn 2020). That being said, certain allowances can be made in the case of an outbreak, and we are getting better at developing platform technologies that allow for the development of viable candidates at increasingly faster rates.

Globally, the therapeutic pipeline for SARS-CoV-2 contains about 15 potential vaccine candidates (Pang et al. 2020). These candidates employ various different technologies, including messenger RNA (mRNA), DNA-based, nanoparticles, synthetic and modified virus-like particles (Pang et al. 2020).

The two principal candidates are those being developed by Inovio Pharmaceuticals and Moderna Therapeutics (in partnership with the NIAID). Both vaccines rely on specific mechanisms that fall under the umbrella term “platform technologies”. That is, both vaccines consist of a primary nucleic construct (in this case RNA or DNA) that is amenable to the insertion of pertinent genetic sequences from a virus of interest so that the construct can be adapted for use against various different viruses. They are ‘platforms’ that allow for more efficient development of vaccine candidates against emerging viruses, such as SARS-CoV-2.

Both candidates are partially funded by the Coalition for Epidemic Preparedness Innovations (CEPI), a global partnership between public, private, philanthropic, and civil society organizations that possesses the resources to fast-track the development of vaccines against emerging infectious disease and enable access to these vaccines during outbreaks. While it will likely take a year or more for the majority of the vaccine candidates to initiate Phase I clinical trials, those funded by CEPI are able to accelerate these timelines (Pang et al. 2020).

The Inovio vaccine is a DNA-based vaccine (Pang et al. 2020). It is in the preclinical stage of development, and phase I testing is projected to occur in the next few months (Pang et al. 2020). Phase I clinical trials for vaccines typically include 20-100 healthy volunteers who are administered a vaccine candidate for the purpose of evaluating safety and determining ideal dose.

The Moderna-NIAID vaccine is a mRNA vaccine. Typically, mRNA vaccines include an open reading frame (ORF) for the target antigen and are flanked by untranslated regions (UTRs) with a terminal poly(A) tail (Zhang et al. 2019). Theoretically, after vaccine delivery, mRNA vaccines are translated to drive transient expression of antigen to promote an immune response (Zhang et al. 2019).

Recently, Moderna escalated development and sent vaccine to NIAID to begin the process of initiating a phase I trial to test the safety and immunogenicity of the vaccine. The trial is projected to begin at the end of April, with preliminary results in July or August (Loftus 2020). The time it took Moderna to develop and prepare the vaccine after learning of the virus’ genetic sequence from Chinese scientists in January is extraordinary. Following the outbreak of SARS-CoV in China in 2002, it took approximately 20 months for NIAID to get a vaccine into the first stage of human testing, according to NIAID Director Dr. Anthony Fauci (Loftus 2020).

Yet, it is still unclear whether Moderna’s vaccine candidate will provoke a sufficient immune response to be effective against SARS-CoV-2. The premise of gene-based platform technologies rests on the ability to target segments of the viral genome that are involved in provoking host immune response. Although we can make well-informed choices on what sequences provoke immunogenicity, we won’t know if the optimal sequence has been selected until human trials are completed (Loftus 2020). So too, there is no precedence for a vaccine of this kind since there are not yet any approved human vaccines that use this gene-based technology (Loftus 2020).

Virologist Dr. Jose Esparza commented the following on Moderna’s vaccine candidate: “The rapid manufacturing of the RNA vaccine is great. But preclinical experiments are important to assess safety before carefully moving ahead with small phase I trials in human volunteers. Special attention should be placed to a potential ‘Antibody Dependent Enhancement of Infectivity’ triggered by the induction of binding but no neutralizing antibodies.”

Indeed, the fast development of a vaccine and imminent phase I testing do not guarantee its efficacy. We will not know until after human trials whether the sequence Moderna and NIAID selected provokes a sufficient immune response to impart protection. And, even if the first studies show encouraging results, the vaccine might not be widely available until 2021 due to the later phase clinical trials and regulatory supervision that will be required to allow for its use in the general public.

To date, the best source of protection against SARS-CoV-2 remains to be the recommendations of the CDC and similar organizations: avoid close contact with those who are sick; avoid touching your eyes, nose and mouth; remain home when you are sick; cover your cough or sneeze with a tissue and discard properly; clean and disinfect frequently touched surfaces; wear a facemask if you are showing symptoms (face masks are not beneficial to those who are well).

References

Dunn A. The Wuhan coronavirus has now claimed more lives than SARS. Top scientists told us it could take years and cost $1 billion to make a vaccine to fight the epidemic. Business Insider. (2020). https://www.businessinsider.com/wuhan-coronavirus-vaccine-could-take-years-timeline-and-cost-2020-2.

Loftus P. Drugmaker Moderna Delivers First Experimental Coronavirus Vaccine for Human Testing. Wall Street Journal. (2020). https://www.wsj.com/articles/drugmaker-moderna-delivers-first-coronavirus-vaccine-for-human-testing-11582579099.

Pang J, Wang MX, Ang IYH, Tan, SHX, Lewis RF, Chen, JI, Gutierrez RA, Gwee SXW, Chua PEY, Yan Q, Ng XY, Yap RKS, Tan HY, Teo YY, Tan CC, Cook AR, Yap JCH, Hsu LY. Potential Rapid Diagnostics, Vaccine Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review. J. Clin. Med. (2020) 9(3). doi: 10.3390/jcm9030623.

Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA Vaccines for Infectious Diseases. Front. Immunol. (2019). doi: 10.3389/fimmu.2019.00594

Filed Under: Basic virology, Helen Stilwell Tagged With: COVID-19, SARS-CoV-2, vaccine, viral, virology, virus, viruses

Reader Interactions

Comments

  1. GetQoralHealth says

    13 March 2020 at 1:04 am

    Like all coronavirus vaccine plays, however, Inovio may have trouble sustaining these recent gains. The core issue is that it takes an exceedingly long time to trial and gain a regulatory approval for any ac7 vaccine. That means that unless SARS-CoV-2 becomes part of the seasonal landscape of respiratory illnesses, Inovio’s INO-4800 may never see the light of day.

  2. bks says

    13 March 2020 at 7:00 am

    What’s wrong with the JHU “dashboard”? Number of new cases dropped by 75% yesterday?

  3. Justin says

    13 March 2020 at 9:01 pm

    It occurs to me, with so many different technologies being employed at roughly the same time to tackle the same issue, this might really be a boon for a lot of these platforms.
    Best case scenario a lot of these platforms work, many companies learn how to rapidly develop a new vaccines and we can use this knowledge in the future.

  4. Letter says

    16 March 2020 at 5:51 pm

    Thank you for article

  5. Petko Vasilev says

    1 April 2020 at 3:31 am

    We need risky measure in this extremal circumstances. ..phases! ? All world is clinical trial.

Primary Sidebar

by Vincent Racaniello

Earth’s virology Professor
Questions? virology@virology.ws

With David Tuller and
Gertrud U. Rey

Follow

Facebook, Twitter, YouTube, Instagram
Get updates by RSS or Email

Contents

Table of Contents
ME/CFS
Inside a BSL-4
The Wall of Polio
Microbe Art
Interviews With Virologists

Earth’s Virology Course

Virology Live
Columbia U
Virologia en Español
Virology 101
Influenza 101

Podcasts

This Week in Virology
This Week in Microbiology
This Week in Parasitism
This Week in Evolution
Immune
This Week in Neuroscience
All at MicrobeTV

Useful Resources

Lecturio Online Courses
HealthMap
Polio eradication
Promed-Mail
Small Things Considered
ViralZone
Virus Particle Explorer
The Living River
Parasites Without Borders

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.