Vaccines

Lecture 19
Biology W3310/4310
Virology
Spring 2015

Nothing shocks me. I’m a scientist.
INDIANA JONES
Vaccines are our proven best defense against viruses

- Vaccination mobilizes the host immune system to prevent virus infections
 - Immune memory

- Vaccination breaks the chain of transmission
Vaccines stimulate a protective immune response

Diagram:
- Initial immune response
- Protective immunity
- Immunological memory

- Antibody prevalence and T cell number
- Time (days)
- First infection
- Mild or inapparent reinfection

Principles of Virology, ASM Press
- Jenner, 1796
- Pasteur, 1885 - rabies vaccine; introduced the term vaccination from *vacca* (Latin, cow) in honor of Jenner
- Yellow fever, influenza vaccines - 1930s
Large-scale vaccination campaigns can be successful

Polio
- Inactivated vaccine
- Oral vaccine

Measles
- Vaccine

![Graphs showing reported cases and estimated measles deaths](Principles of Virology, ASM Press)
Vaccines are now an integral part of our existence

- We immunize children, adults of all ages, domesticated and wild animals
- Because of immunization, many childhood diseases are rare
- Vaccines are a major part of the First World’s public health measures, **but not the Third World**
How vaccines work in the real world

- Maintenance of a critical level of immunity
- Herd immunity
Herd Immunity

• Virus spread stops when the probability of infection drops below a critical threshold

• The threshold is virus and population specific

• Smallpox: 80 - 85%

• Measles: 93 - 95%

• No vaccine is 100% effective

• When 80% of population is immunized with measles, 76% of population is immune
Public complacency is dangerous to any vaccine program

- “Viral diseases are a thing of the past”
- “Polio is long gone”
- “I never get the flu”
- “Measles is just a trivial kid’s disease”
- “Chicken pox only affects kids”
- “Kids should get infected naturally”
- “I’m not injecting anything into my body”
- “Vaccines make you sick, they cause autism, they cause multiple sclerosis, etc etc”
- “I know a guy who got the flu shot and then got the flu”
- “I can’t afford to immunize my kids”
- “I don’t have time this year”

When these attitudes prevail, society has serious problems with large-scale vaccination programs
Go to:

m.socrative.com
room number: virus

Herd immunity:

1. Demonstrates the importance of immunizing livestock
2. Emphasizes that not everyone must be immune to protect a population
3. Emphasizes that everyone must be immune to protect a population
4. Describes how group-think can dominate anti-vaccine choices
5. All of the above
Vaccines can be *active* or *passive*

- **Active** - instilling into the recipient a modified form of the pathogen or material derived from it that induces immunity to disease
 - *Long term protection*

- **Passive** - instilling the products of the immune response (antibodies or immune cells) into the recipient
 - *Short term protection*
A natural passive vaccine

![Graph showing serum immunoglobulin levels from conception to adulthood. The graph illustrates the increase in IgM, IgG, and IgA levels over time, with IgG being present at birth and IgA being absent until adulthood.]
Zmapp, the best known passive vaccine

- Raised in mice immunized with virus-like particles
- Chimerized into human IgG1 scaffold
- Produced in tobacco plants
Passive therapy with convalescent serum

- Jordi Casals infected himself with Lassa virus at Yale in 1969
- Transfused with blood from nurse who had survived Lassa fever
Requirements of an effective vaccine

- Induction of an appropriate immune response
 - Th1 vs Th2 response

- Vaccinated individual must be protected against disease caused by a virulent form of the specific pathogen
 - Just getting ‘a response’ is not enough (e.g. producing antibodies)
Requirements of an effective vaccine

- Safety: no disease, minimal side effects
- Induce protective immunity in the population
- Protection must be long-lasting
- Low cost (<$1, WHO); genetic stability; storage considerations; delivery (oral vs. needle)
<table>
<thead>
<tr>
<th>Disease or virus</th>
<th>Type of vaccine</th>
<th>Indications for use</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenovirus</td>
<td>Live attenuated, oral</td>
<td>Military recruits</td>
<td>One dose</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>Inactivated whole virus</td>
<td>Travellers, other high-risk groups</td>
<td>0, 1, and 6 mo</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>Yeast-produced recombinant surface protein</td>
<td>Universal in children, exposure to blood, sexual promiscuity</td>
<td>0, 1, 6 and 12 mo</td>
</tr>
<tr>
<td>Influenza</td>
<td>Inactivated viral subunits</td>
<td>Elderly and other high-risk groups</td>
<td>Two-dose primary series, then one seasonal dose</td>
</tr>
<tr>
<td>Influenza</td>
<td>Live attenuated</td>
<td>Healthy children and adults 5–49 yr old</td>
<td>Two-dose primary series, then one seasonal dose</td>
</tr>
<tr>
<td>Japanese encephalitis</td>
<td>Inactivated whole virus</td>
<td>Travelers to or inhabitants of high-risk areas in Asia</td>
<td>0, 7, and 30 days</td>
</tr>
<tr>
<td>Measles</td>
<td>Live attenuated</td>
<td>Universal vaccination of infants</td>
<td>12 mos of age; 2nd dose, 6 to 12 yr of age</td>
</tr>
<tr>
<td>Mumps</td>
<td>Live attenuated</td>
<td>Universal vaccination of infants</td>
<td>Same as measles, given as MMR</td>
</tr>
<tr>
<td>Papilloma (human)</td>
<td>Yeast- or SF9-produced virus-like particles</td>
<td>Females 9–26 yr old</td>
<td>Three doses</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>Live reassortant</td>
<td>Healthy infants</td>
<td>2, 3, and 6 mo or 2 and 4 mo of age depending on vaccine</td>
</tr>
<tr>
<td>Rubella</td>
<td>Live attenuated</td>
<td>Universal vaccination of infants</td>
<td>Same as measles, given as MMR</td>
</tr>
<tr>
<td>Polio (inactivated)</td>
<td>Inactivated whole viruses of types 1, 2, and 3</td>
<td>Changing: commonly used for immunosuppressed where live vaccine cannot be used</td>
<td>2, 4, and 12–18 mo of age, then 4 to 6 yr old</td>
</tr>
<tr>
<td>Polio (live)</td>
<td>Live, attenuated, oral mixture of types 1, 2, and 3</td>
<td>Universal vaccination; no longer used in United States</td>
<td>2, 4, and 6–18 mo of age</td>
</tr>
<tr>
<td>Rabies</td>
<td>Inactivated whole virus</td>
<td>Exposure to rabies, actual or prospective</td>
<td>0, 3, 7, 14, and 28 days postexposure</td>
</tr>
<tr>
<td>Smallpox</td>
<td>Live vaccinia virus</td>
<td>Certain laboratory workers</td>
<td>One dose</td>
</tr>
<tr>
<td>Varicella</td>
<td>Live attenuated</td>
<td>Universal vaccination of infants</td>
<td>12 to 18 mo of age</td>
</tr>
<tr>
<td>Varicella-zoster</td>
<td>Live attenuated</td>
<td>Adults 60 yr old and older</td>
<td>One dose</td>
</tr>
<tr>
<td>Yellow fever</td>
<td>Live attenuated</td>
<td>Travel to areas where infection is common</td>
<td>One dose every 10 yr</td>
</tr>
</tbody>
</table>
Inactivated vaccines

• Chemical procedures (e.g. formalin, β-propiolactone, nonionic detergents)

• Infectivity is eliminated, antigenicity not compromised
Poliomyelitis

Polio (grey), myelon (marrow) = Greek
itis (inflammation of) = Latin

“A common, acute viral disease characterized
clinically by a brief febrile illness with sore throat,
headache and vomiting, and often with stiffness of
the neck and back. In many cases a lower neuron
paralysis develops in the early days of illness”

—J.R. Paul, “Poliomyelitis (Infantile Paralysis)”, in A
Textbook of Medicine, 1959.
Poliomyelitis
Inactivated poliovirus vaccine, IPV

- Poliovirus treated with formalin to destroy infectivity
- 1954: National Foundation for Infantile Paralysis-sponsored clinical trial of Jonas Salk’s IPV, 1,800,000 children
- >50% protection, results announced 12 April 1955, licensed same day
SALK'S VACCINE WORKS!

All Local Teams Are Rained Out

Official Report

POLIO VACCINE IS 'SAFE, EFFECTIVE AND POTENT'

Dr. Francis' Official Report:

'55 VACCINE WILL BE EVEN BETTER

Vaccine 80-90% Effective
Virus

Mucosal surfaces

Lymph node

Blood

Polio

Inactivated vaccine

Oral vaccine

Reported cases per 100,000 population

0 10 20 30 40

Principles of Virology, ASM Press
Three types: A, B, C

Influenza

- HA (hemagglutinin)
- NA (neuraminidase)
- M2 (ion channel)
- M1 (matrix protein)
- Lipid bilayer
- 8 RNPs
- (-) strand RNA
- RNA polymerase
- NP (nucleocapsid protein)
Inactivated influenza vaccine

- 3000-49000 deaths/yr in US due to influenza virus
- Vaccine: virus grown in embryonated chicken eggs, formalin-inactivated or detergent or chemically disrupted virions
- 75-100 million doses manufactured each year US
- 60% effective in healthy children and adults <65 yr
- Protection correlates with serum antibodies to HA, NA
- Vaccine produced in cell culture avoids egg allergies (Flucelvax)
Inactivated influenza vaccine

- Envelope proteins change each year; new strains must be selected in the first few months for manufacture
- Use reassortants with most RNA segments from high-yielding strain, HA, NA from selected strain
- 2013-14 vaccine: A/California/7/2009 (H1N1); A/Victoria/361/2011 (H3N2); B/Mass/2/2012; B/Brisbane/60/2008
Selecting an influenza virus vaccine

*World Health Organization Global Influenza Surveillance Network
†WHO Collaborating Centres
‡US Centers for Disease Control and Prevention
§US Food and Drug Administration
Antigenic drift: Influenza virus
Go to:

m.socrative.com
room number: virus

Which statement about inactivated viral vaccines is incorrect:

1. Chemicals can be used to inactivate infectivity
2. They do not replicate
3. They can be dangerous if inactivation is not complete
4. Antigenic variation can make them ineffective
5. None of the above are incorrect
Subunit vaccines

- Break virus into components, immunize with purified components
- Clone viral gene, express in bacteria, yeast, insect cells, cell culture, purify protein
- Antigen usually a capsid or membrane protein
Flublok

Baculovirus Expression Vector System (BEVS) Technology

- **Baculovirus**
 - Engineer to express recombinant protein under powerful promoter

- ** expresSF+® cells**
 - Infect cells in fermenter
 - Low-cost serum-free media

- **Pure protein**
 - Purify protein
 - Formulate with PBS into vaccine

Approved for 18-49 years old
Some successful subunit vaccines

- Hepatitis B virus (HBV) - HBsAg protein produced in yeast
- Assembles into empty particles
Human papillomavirus vaccines

Cancer vaccines

- Gardasil (Merck): types 6, 11, 16, 18 produced in *S. cerevisiae*
- Cervarix (GlaxoSmithKline): types 16, 18 produced in insect cells
Future influenza vaccines?

- Virus-like particles: synthesis of HA alone in cells leads to production of immunogenic particles
- Has also been done in plants
- 1 square meter of plants produces 20,000 doses at under $0.20/dose
Subunit vaccine pro and con

• Advantages of a modern subunit vaccine
 - Recombinant DNA technology
 - No viral genomes or infectious virus

• Disadvantages
 - Expensive
 - Injected
 - Poor antigenicity
Inactivated and subunit vaccines have a common problem

- Viral proteins don’t replicate or infect
- Don’t send out ‘danger signal’ to the immune response
- Pure proteins often require *adjuvant* to mimic inflammatory effects of infection
Adjuvants

• Stimulate early processes in immune recognition
• Produce a more robust acquired immune response with *less antigen*
 - Slow release of antigen as site of inoculation
 - Inflammation

• Licensed
 - Alum (aluminum hydroxide or phosphate; in HBV vaccine) - US
 - AS04 in Cervarix (alum, monophosphoryl lipid A, TLR4 ligand) - US
 - MF59 - squalene oil-in-water emulsion (depot, innate stimulatory) - Europe
New vaccine technologies

Microneedle patch

Thermostabilization in silk (or sugars)
Universal influenza vaccine

- Broadly neutralizing human mAbs
- Prime-boost
- HA stem antigen
Go to:

m.socrative.com
room number: virus

What are some requirements for an effective vaccine?

1. Low cost
2. Ease of administration
3. Provides long lasting immunity
4. Minimal side effects
5. All of the above
Replication competent, attenuated vaccines

- Viral replication occurs, stimulates immune response
- Infection induces mild or inapparent disease
Inactivated virus vaccine

- Initial dose
- Second dose
- Third dose

Replication competent virus vaccine

- Initial dose
- Amplification of injected dose

Time →

Principles of Virology, ASM Press
Pathogenic virus is isolated from a patient and grown in human cultured cells

The cultured virus is used to infect monkey cells

The virus acquires many mutations that allow it to grow well in monkey cells

The virus no longer grows well in human cells and may be a candidate for a vaccine
FluMist

- Replication competent, intranasally administered influenza vaccine
- Multivalent
- Reassortants of master donor strain - HA, NA genes from current strains
- Viruses are cold-adapted, temperature-sensitive, and attenuated in a ferret model
- Replicate only in nasopharynx, produce protective immunity
Attenuation of poliovirus neurovirulence

Albert Sabin’s three strains of OPV licensed in the US in 1961
Determinants of Sabin vaccine strain attenuation

<table>
<thead>
<tr>
<th>Virus</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1/Sabin</td>
<td>5’-UTR nt 480 VP1 aa 1106 VP1 aa 1134 VP3 aa 3225 VP4 aa 4065</td>
</tr>
<tr>
<td>P2/Sabin</td>
<td>5’-UTR nt 481 VP1 aa 1143</td>
</tr>
<tr>
<td>P3/Sabin</td>
<td>5’-UTR nt 472 VP3 aa 3091</td>
</tr>
</tbody>
</table>
Reported Cases of Paralytic Poliomyelitis, United States, 1961-2003

Reversion of P3/Sabin

<table>
<thead>
<tr>
<th>Virus</th>
<th>Base at 472</th>
<th>Time of isolation after vaccination</th>
<th>Histological lesion score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sabin vaccine</td>
<td>U</td>
<td></td>
<td>0.36</td>
</tr>
<tr>
<td>DM1</td>
<td>U</td>
<td>24 h</td>
<td>ND</td>
</tr>
<tr>
<td>DM2</td>
<td>U</td>
<td>31 h</td>
<td>1.58</td>
</tr>
<tr>
<td>DM3</td>
<td>U/C</td>
<td>35 h</td>
<td>ND</td>
</tr>
<tr>
<td>DM4</td>
<td>C</td>
<td>47 h</td>
<td>2.48</td>
</tr>
<tr>
<td>DM38</td>
<td>C</td>
<td>18 da</td>
<td>ND</td>
</tr>
<tr>
<td>P3/119</td>
<td>C</td>
<td>3-4 weeks</td>
<td>3.34</td>
</tr>
</tbody>
</table>

Eradication of poliomyelitis

1988

WHA Resolution

2000

Stop poliovirus transmission

2005

Certify Global Eradication

2005-2010

Stop polio immunization
Can viral diseases be eradicated?

- Smallpox eradication program launched 1967, eradicated 1978

- Two features essential for eradication:
 - Replication in only one host
 - Vaccination induces lifelong immunity
Polio eradication

- Polio vaccine differs from smallpox in that it can revert to a form that causes disease
- In countries using OPV, the only source of polio eventually is the vaccine
- OPV use will cease after eradication
Problems associated with VDPV

- Outbreaks of polio in Egypt, Dominican Republic/Haiti, Philippines, Madagascar, caused by VDPV
- VDPV strains regained virulence, spread in human populations
- Long-term persistence and excretion of VDPVs in immunocompromised persons
- Transition to IPV
Vaccination against the vaccine

- WHO no longer recommends OPV only
 - At least 1 dose IPV should be added (3 OPV + 1 IPV)
 - Types 2, 3 are likely eradicated

- IPV-OPV sequential schedule when VAPP is a concern

- IPV only in countries with sustained high immunization coverage, low risk of wPV importation

http://www.who.int/wer/2014/wer8909.pdf?ua=1
Even if we eradicate a virus from the earth, as long as the nucleotide sequence is known...