TWiV 320: Retroviruses and cranberries

On episode #320 of the science show This Week in Virology, Vincent speaks with John Coffin about his career studying retroviruses, including working with Howard Temin, endogenous retroviruses, XMRV, chronic fatigue syndrome and prostate cancer, HIV/AIDS, and his interest in growing cranberries.

You can find TWiV #320 at

De-discovering pathogens: Viral contamination strikes again

Spin column

Qiagen spin column at right. The silica layer is white. The spin column is placed in the microcentrifuge tube, left, to remove liquids and elute nucleic acids.

Do you remember the retrovirus XMRV, initially implicated as the cause of chronic fatigue syndrome, and later shown to be a murine virus that contaminated human cells grown in mice? Another virus thought to be associated with human disease has recently been shown to be a contaminant, derived from a piece of laboratory plasticware that is commonly used to purify nucleic acids from clinical samples.

During a search for the causative agent of seronegative hepatitis (disease not caused by hepatitis A, B, C, D, or E virus) in Chinese patients, a novel virus was discovered in sera by next generation sequencing. This virus, provisionally called NIH-CQV, has a single-stranded DNA genome that is a hybrid between parvoviruses and circoviruses. When human sera were screened by polymerase chain reaction (PCR), 63 of 90 patient samples (70%) were positive for the virus, while sera from 45 healthy controls were negative. Furthermore, 84% of patients were positive for IgG antibodies against the virus, and 31% were positive for IgM antibodies (suggesting a recent infection). Among healthy controls, 78% were positive for IgG and all were negative for IgM. The authors concluded that this virus was highly prevalent in some patients with seronegative hepatitis.

A second independent laboratory also identified the same virus (which they called PHV-1) in sera from patients in the United States with non-A-E hepatitis, while a third group identified the virus in diarrheal stool samples from Nigeria.

The first clue that something was amiss was the observation that the novel virus identified in all three laboratories shared 99% nucleotide and amino acid identity. This would not be expected in virus samples from such geographically, temporally, and clinically diverse samples. Another problem was that in the US non-A-E study, all patient sample pools were positive for viral sequences. These observations suggested the possibility of viral contamination.

When nucleic acids were re-purified from the US non-A-E samples using a different method, none of the samples were positive for the novel virus. Presence of the virus was ultimately traced to the use of column-based purification kits manufactured by Qiagen, Inc. Nearly the entire novel viral genome could be detected by deep sequencing in water that was passed through these columns.

The nucleic acid purification columns contaminated with the novel virus were used to purify nucleic acid from patient samples. These columns (pictured), produced by a number of manufacturers, are typically a few inches in length and contain a silica gel membrane that binds nucleic acids. The clinical samples are added to the column, which is then centrifuged briefly to remove liquids (hence the name ‘spin’ columns). The nucleic acid adheres to the silica gel membrane. Contaminants are washed away, and then the nucleic acids are released from the silica by the addition of a buffer.

Why were the Qiagen spin columns contaminated with the parvovirus-circovirus hybrid? A search of the publicly available environmental metagenomic datasets revealed the presence of sequences highly related to PHV-1 (87-99% nucleotide identity). The datasets containing PHV-1 sequences were obtained from sampled seawater off the Pacific coast of North America, and coastal regions of Oregon and Chile. Silica, a component of spin columns, may be produced from diatoms. If the silica in the Qiagen spin columns was produced from diatoms, and if PHV-1 is a virus of ocean-dwelling diatoms, this could explain the source of contamination.

In retrospect it was easy to be fooled into believing that NIH-CQV might be a human pathogen because it was only detected in sick, and not healthy patients. Why antibodies to the virus were detected in samples from sick and healthy patients remains to be explained. However NIH-CQV/PHV-1 is likely not associated with any human illness: when non-Qiagen spin columns were used, PHV-1 was not found in any patient sample.

The lesson to be learned from this story is clear: deep sequencing is a very powerful and sensitive method and must be applied with great care. Every step of the virus discovery process must be carefully controlled, from the water used to the plastic reagents. Most importantly, laboratories involved in pathogen discovery must share their sequence data, something that took place during this study.

Trust science, not scientists.

TWiV 213: Not bad for a hobby

On the final episode of the year of the science show This Week in Virology, the TWiV team reviews twelve cool virology stories from 2012.

You can find TWiV #213 at

TWiV Special: A paradigm for pathogen de-discovery

On this special episode of the science show This Week in Virology, Vincent and Ian review a multicenter blinded analysis which finds no association between chronic fatigue syndrome/myalgic encephalomyelitis and XMRV or polytropic murine leukemia virus.

You can find this TWiV Special at

Cleaning up after XMRV

XMRVThe retrovirus XMRV does not cause prostate cancer or chronic fatigue syndrome – that hypothesis was disproved by the finding that the virus was produced in the laboratory in the 1990s by passage of a prostate tumor in nude mice. A trio of new papers on the virus attempt to address questions about the serological detection of XMRV in prostate cancer, and further emphasize that XMRV is not a human pathogen.

Absence of XMRV and Closely Related Viruses in Primary Prostate Cancer Tissues Used to Derive the XMRV-Infected Cell Line 22Rv1. The human cell line 22Rv1, which was established from a human prostate tumor (CWR22), produces infectious XMRV. It was previously shown that DNA from various passages of the prostate tumor in nude mice (called xenografts), did not contain XMRV, but cells from the mice do contain two related proviruses called PreXMRV-1 and PreXMRV-2 which recombined to form XMRV between 1993-1996. In a new study samples of the original prostate tumor CWR22 were examined for the presence of XMRV or related viruses. PCR assays targeting the viral gag, pol, and env sequences failed to provide evidence of XMRV in CWR22 tissue. These assays could detect endogenous murine leukemia virus DNA in mouse DNA, indicating that the CWR22 tumor contained neither XMRV nor related viruses. In addition, no XMRV sequences were detected when sections from the CWR22 tumor were examined by in situ hybridization. The same assay previously detected XMRV sequences in stromal cells of prostate tumors. The authors conclude that “Our findings conclusively show an absence of XMRV or related viruses in prostate of patient CWR22, thereby strongly supporting a mouse origin of XMRV.”

An important question not addressed by this study is why XMRV was originally detected in multiple prostate tumors obtained from patients at the Cleveland Clinic. The authors seem to be working on this problem, as they state that “…the sequence of XMRV present in 22Rv1 cells is virtually identical with XMRV cloned using human prostate samples, thus suggesting laboratory contamination with XMRV nucleic acid from 22Rv1 cells as the source. Further experiments designed to confirm or refute this hypothesis are currently underway.”

No biological evidence of XMRV in blood or prostatic fluid from prostate cancer patients. Samples from individuals with prostate cancer were tested for the presence of infectious XMRV and for antibodies against the virus. Neither infectious virus nor antibodies were detected in blood plasma (n = 29) or prostate secretions (n = 5). Among these were five specimens that had previously tested positive for XMRV DNA, including two from the original study. The authors conclude that the results “support the conclusion from other studies that XMRV has not entered the human population”.

Susceptibility of human lymphoid tissue cultured ex vivo to Xenotropic murine leukemia virus-related virus (XMRV) infection. Although XMRV is not known to cause human disease, whether it has to potential to do so is unknown. The virus can infect a variety of cultured human cells including peripheral blood mononuclear cells and neuronal cells. In this study the authors placed human tonsillar tissue in culture and infected it with XMRV. Proviral (integrated) DNA could be detected in the cells several weeks after infection and virus particles were released into the medium. However these released viruses could not infect fresh tonsillar tissue, possibly due to modification by innate antiviral restriction factors such as APOBEC, which is known to inhibit XMRV infectivity.

Based on their findings the authors conclude that “laboratories working with XMRV producing cell lines should be aware of the potential biohazard risk of working with this replication-competent retrovirus”.

It is clear that XMRV does not cause chronic fatigue syndrome; the original findings of Lombardi and colleagues linking the virus to this disease have been retracted by the journal. However there are still two papers in the literature that report the presence of XMRV in prostate – the original XMRV discovery paper and one from Ila Singh’s laboratory. In both papers XMRV detection in tissues was accomplished by using serological procedures. Based on the papers summarized here, the assays did not detect XMRV – but a satisfactory explanation for the positive signals has not yet been provided.

TWiV 165: The email zone

T4 tatooHosts: Vincent Racaniello, Dickson DespommierRich Condit, and Alan Dove

Vincent, Dickson, Rich, and Alan answer listener questions about XMRV, cytomegalovirus, latency, shingles vaccine, myxomavirus and rabbits, and more.

Please help us by taking our listener survey.

Click the arrow above to play, or right-click to download TWiV 165 (61 MB .mp3, 102 minutes).

Subscribe to TWiV (free) in iTunes , at the Zune Marketplace, by the RSS feed, by email, or listen on your mobile device with the Microbeworld app.

Links for this episode:

Weekly Science Picks

Dickson – Creation
Rich –
America’s Science Decline
AlanOut of context science
Vincent – The Scientist Top 10 Innovations 2011

Listener Pick of the Week

Jim – Christoph Adami: Finding life we can’t imagine (TED)
TimPatient Zero (Radiolab)
Mary – Natural Obsessions by Natalie Angier
Jimmy –
Science Exchange

Send your virology questions and comments (email or mp3 file) to, or call them in to 908-312-0760. You can also post articles that you would like us to discuss at and tag them with twiv.

TWiV 164: Six steps forward, four steps back

xmrvHosts: Vincent RacanielloRich Condit, and Alan Dove

Vincent, Alan, and Rich review ten compelling virology stories of 2011.

Please help us by taking our listener survey.

Click the arrow above to play, or right-click to download TWiV 164 (60 MB .mp3, 99 minutes).

Subscribe to TWiV (free) in iTunes , at the Zune Marketplace, by the RSS feed, by email, or listen on your mobile device with the Microbeworld app.

Ten virology stories of 2011:

  1. XMRV, CFS, and prostate cancer (TWiV 119, 123, 136, 150)
  2. Influenza H5N1, ferrets, and the NSABB (TWiV 159)
  3. The Panic Virus (TWiV 117)
  4. Polio eradication (TWiV 127, 149)
  5. Viral oncotherapy (TWiV 124, 131, 142, 156)
  6. Hepatitis C virus (TWiV 130, 137, 141)
  7. Zinc finger nuclease and HIV therapy (TWiV 144)
  8. Bacteria help viruses (TWiV 154)
  9. Human papillomaviruses (TWiV 126)
  10. Combating dengue with Wolbachia (TWiV 115, 147)

Links for this episode:

Weekly Science Picks

Rich – Fundamentals of Molecular Virology by Nicholas H. Acheson
AlanFetch, with Ruff Ruffman
Vincent – Year end reviews at Rule of 6ix and Contagions

Listener Pick of the Week

GarrenTrillion-frame-per-second video
Judi – iBioMagazine
Ricardo –
Brain Picking’s 11 best science books of 2011

Send your virology questions and comments (email or mp3 file) to, or call them in to 908-312-0760. You can also post articles that you would like us to discuss at and tag them with twiv.

This year in virology

XMRVFor some time I have thought about reviewing this year’s topics on virology blog in 2001, not only to get a sense of what I thought was significant, but more importantly, to highlight areas that need more coverage. I went through all the articles I wrote in 2011, put them in subject categories, and listed them by number of articles. The results are both obvious and surprising.

I wrote most frequently about the retrovirus XMRV and its possible role in chronic fatigue syndrome and prostate cancer. This extensive coverage was warranted because we had an opportunity to learn how disease etiology is established, followed by development of therapeutics. By the end of the year we learned that XMRV does not cause human disease, but the journey to that point was highly instructive.

The next most frequently visited topic on virology blog was influenza. Writing often about this virus makes sense because it is a common human infection that occurs every year, and controlling it is a continuing goal of virology research.

There were five  posts noting the death of virologists, colleagues, or someone I thought made a substantial impact on my career.

I wrote more about poliovirus than any other virus except XMRV and influenza. Eradication of poliomyelitis continues to be difficult and faces periodic setbacks.

I only wrote three articles about topics in basic virology.

Like many others, I find the biggest viruses and their virophages compelling.

The past year saw the release of Contagion, a movie about a virus outbreak. Look for an analysis on TWiV in 2012.

The state of science education and science funding is becoming more of a concern. It is not a topic I write about often – I prefer to focus on the science of virology – but for future scientists it is extremely important.

The other posts covered a variety of topics and viruses, including HIV, human papilloma viruses, hepatitis C virus, and smallpox virus.

What have I learned from looking back? The best covered viruses – XMRV, influenza, and poliovirus – deserve the attention. I am surprised that there were so few articles on important viruses such as HIV, HCV, rotaviruses, and herpesviruses. That shortcoming will have to change. I did not write enough about basic virology. One could argue that teaching a virology course is enough – but I think that concise, informative articles on basic virology are very useful. I’ll try to do more of that in 2012. There is one topic I’d like to write less about, but over which I have little control – the passing of scientists.

Thank you for coming here to learn about virology.

Authors retract paper on detection of murine leukemia virus-releated sequences in CFS patients

x or pA paper that reported finding retroviral sequences in blood from patients with chronic fatigue syndrome (CFS) has been retracted by the authors. Just four days ago the 2009 Science report of Lombardi and colleagues was editorially retracted. As 2011 comes to an end, so does the hypothesis that retroviruses are etiologic agents of CFS.

Readers of virology blog know that in 2009 Lombardi et al. published a Science report indicating they had detected the new retrovirus XMRV – first detected a few years earlier in prostate tumors – in the blood of a high proportion of patients with chronic fatigue syndrome. Many other laboratories attempted to reproduce this finding, but none were successful.

The next year Alter and colleagues reported finding retroviral sequences in the blood of a substantial number of CFS patients. No viruses were isolated in the Alter study; viral sequences were obtained by polymerase chain reaction (PCR). The viral sequences were not XMRV, but were closely related to endogenous retroviruses of mice called polytropic murine leukemia viruses. (Polytropic means the viruses can infect many species, including mice; xenotropic means that the viruses, though originating in mice, only infect non-mouse species).

The Lo-Alter finding was viewed by many (including myself) as supporting the findings of Lombardi et al., but upon closer inspection it became apparent that they only clouded the situation. The viral sequences reported in the Alter study were not XMRV, and it was not clear why CFS would be caused by such a diverse range of viruses. A second report in 2011 reported MLV-like sequences in a CFS cohort but many other studies failed to find any kind of retrovirus in the blood of CFS patients.

Earlier this year it became clear that XMRV is a laboratory-generated recombinant murine retrovirus: it arose during the passage of a prostate tumor in nude mice in the early 1990s. This finding made it highly unlikely that the virus could be associated with human disease. Lombardi and colleagues then retracted part of the 2009 Science paper that reported viral nucleic acid sequence; they noted that their samples were contaminated with XMRV plasmids. What remained of the paper were serological and virus culture experiments that were not specific for XMRV. Last week the remainder of this paper was editorially retracted by Science.

That left the Lo-Alter findings. The first warning came from the observation made by several laboratories that reagents used to carry out PCR are often contaminated with mouse DNA (an example is Singh’s study). The presence of this adventitious DNA can lead to detection of MLV-like sequences that resemble those found in the Lo-Alter study. The implication was clear: the Lo-Alter findings were wrong, a result of contamination of PCR reagents with mouse DNA.

More doubt came from a report of the Blood XMRV Scientific Working Group, which was assembled to determine if XMRV constituted a threat to the blood supply. In this study, sets of coded samples previously shown to be XMRV positive, as well as samples from healthy controls, were blinded and provided to 9 laboratories for analysis by PCR, virus culture, and serology. Two laboratories reported evidence of XMRV in the coded samples. Only the Whittemore-Peterson Institute identified positive specimens by PCR: two from negative controls, and one from a CFS patient. The Lo laboratory did not detect any positives by PCR, using the same nested assay that they had previously reported in their PNAS paper. The samples tested included 5 specimens that were positive in the Lo-Alter study.

The retraction of the Lo-Alter PNAS paper curiously begins with the assertion that the authors could not detect contaminating mouse DNA in their samples – which was most certainly present and lead to their detection of MLV-like sequences.

Although our published findings were reproducible in our laboratory and while there has been no evidence of contamination using sensitive mouse mitochondrial DNA or IAP assays or in testing coded panels…

This failure remains puzzling and unexplained; but as they report in the next paragraph, they appear to have run out of material to distribute to other laboratories for ‘independent confirmation’.

The authors provide three additional reasons why they are retracting this paper. They note that no one has been able to reproduce their findings, including the Blood XMRV Scientific Working Group. They have not been able to find (along with collaborators) anti-XMRV antibody, XMRV virions, or viral integration sites in patient samples. Finally, they mention their finding from the PNAS paper that a second set of samples taken 15 years later from the same CFS patients also were positive for MLV-like viruses. Phylogenetic analyses revealed that these sequences were clearly not descendants of the original strains. The sequence data used to make this conclusion were available for the PNAS publication, so it is not clear why this evolutionary incompatibility was not noted previously.

The authors conclude:

…in consideration of the aggregate data from our own laboratory and that of others, it is our current view that the association of murine gamma retroviruses with CFS has not withstood the test of time or of independent verification and that this association is now tenuous. Therefore, we retract the conclusions in our article.

The retraction of the Lombardi et al and Lo-Alter papers erases the published evidence suggesting involvement of a retrovirus with CFS. While it is theoretically possible that CFS has a viral origin, at the moment there are no data in support of a specific viral etiology. Some have suggested that gammaretroviruses related to XMRV might be involved in CFS. But I don’t see how a lab contaminant can point you in the direction of a bona fide etiologic agent. Contaminants cloud our vision, they do not improve it.

In light of these developments, the ongoing Lipkin study (sponsored by the National Institute of Allergy and Infectious Diseases, involving analysis of a coded panel of samples from 150 well-characterized and geographically diverse CFS patients and controls) seems less compelling. Many laboratories have failed to find any retrovirus in CFS patients, and the two papers central to this hypothesis have been retracted. Will results from one laboratory clear the matter up further? Whatever the Lipkin study finds, it will have to be validated by others – because we trust science, not scientists.

Update: The retraction has been published at PNAS.

Science retracts paper on detection of XMRV in CFS patients

Bruce Alberts, Editor-in-Chief of Science magazine, writes that the journal is retracting the 2009 paper describing the detection of the retrovirus XMRV in patients with chronic fatigue syndrome:

Science is fully retracting the Report “Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome”.

He writes that the decision was reached because multiple laboratories have failed to reliably detect XMRV or related viruses in CFS patients. He also cites evidence of ‘poor quality control in a number of specific experiments in the report’, and that Figure 1, table S1, and figure S2 have been retracted by the authors. Finally, he notes the omission of information from the legend of figure 2C, specifically that the authors failed to indicate that the peripheral blood mononuclear cells had been treated with azacytidine, phytohemagglutinin, and IL-2. He concludes:

Given all of these issues, Science has lost confidence in the Report and the validity of its conclusions. We note that the majority of the authors have agreed in principle to retract the Report but they have been unable to agree on the wording of their statement. It is Science’s opinion that a retraction signed by all the authors is unlikely to be forthcoming. We are therefore editorially retracting the Report. We regret the time and resources that the scientific community has devoted to unsuccessful attempts to replicate these results.