TWiV Special: Vincent Munster on MERS-coronavirus and Ebolavirus

At the Rocky Mountain Laboratory in Hamilton, Montana, Vincent speaks with Vincent Munster about the work of his laboratory on MERS-coronavirus and Ebolaviruses.

You can find this TWiV Special at, or listen below.

Click arrow to play
Download TWiV Special (34 MB .mp3, 56 min)
Subscribe (free): iTunesRSSemail

Become a patron of TWiV!

TWiV 427: It was a DURC and UV light

The TWiVoids discuss the March for Science, the GOF moratorium, and a classic virology paper on mapping the gene order for vesicular stomatitis virus.

You can find TWiV #427 at, or listen below.

Click arrow to play
Download TWiV 427 (59 MB .mp3, 98 min)
Subscribe (free): iTunesRSSemail

Become a patron of TWiV!

TWiV 426: I’m Axl, and I’ll be your cervid today

The sages of TWiV explain how chronic wasting disease of cervids could be caused by spontaneous misfolding of prion protein, and the role of the membrane protein Axl in Zika virus entry into cells.

You can find TWiV #426 at, or listen below.

Click arrow to play
Download TWiV 426 (66 MB .mp3, 110 min)
Subscribe (free): iTunesRSSemail

Become a patron of TWiV!

Communication between virus-infected cells

lysis or lysogenyYou might recall learning in high school biology that bacteriophage infection of a host can lead to either replication and cell lysis, or integration of the viral genome into the host (illustrated). The latter event, called lysogeny, spares the host from virus induced killing. For some phages, the decision between lysis and lysogeny appears to be communicated between cells by a small peptide (link to paper).

Evidence that virus-infected cells produce a substance that can regulate the lysis-lysogeny decision came from the observation that conditioned medium from Bacillus subtilis infected with the bacteriophage phi3T – prepared so that is was virus and cell free – protects cells from lysis. The protective component is destroyed by digestion with a proteinase and hence is a protein. Conditioned medium not only inhibits cell lysis, but increases lysogeny, measured by integration of viral DNA into the bacterial genome.

Examination of the genome sequence of phage phi3T suggested that a six amino acid peptide, Ser-Ala-Ile-Arg-Gly-Ala, was the component in conditioned medium that regulates the lytic-lysogenic decision. Addition of the synthetic peptide to infected cells decreased lysis. The levels of this peptide increase during each cycle of phage infection of the Bacillus host.

The authors call the communication peptide ‘arbitrium’ from the Latin word meaning ‘decision’. The gene encoding the peptide is aimP.

AimP appears to work by entering the bacterium through a transporter protein and binding a protein in the bacterial cell called AimR. The AimR protein in turn binds a sequence in the bacterial genome called aimX. When AimR is bound by the peptide, it cannot bind aimX and lysogeny occurs. In the absence of peptide, AimR binds aimX and lysis proceeds. The product of the aimX gene appears to be a regulatory RNA, but how it promotes lysis is not known.

Different phages of B. subtilis also encode peptides that regulate the lysis-lysogeny decision in a phage-specific manner.

These findings describe a viral communication system that determines whether a bacterial host is lysed or lysogenized. When viruses initially infect a host, the result is lysis because levels of peptide are low. After several cycles of infection the AimP concentrations increase, and upon entry of the peptide into bacteria they lead to lysogeny.

The authors of this work suggest that the arbitrium system is a way for the virus to sense the amount of previous infections to decide whether lysis or lysogeny should occur. If many previous infections have taken place, the host population could be too low to support lytic replication, hence lysogeny occurs.  Because lysogens can divide, the bacterial population can be restored to a level that can sustain virus infection.

Of course, the virus particle cannot sense anything – it is a bacterial protein that  binds AimP and another bacterial gene that controls lysis. In other words, the virus-infected cell, not the virus, can sense the amount of previous infections.

It should be straightforward to search the genome sequences of phages that infect other bacteria to determine if such a communication system is widespread. More interesting is whether viruses that infect eukaryotes also have  communication systems that guide decisions about lytic versus non-lytic or latent infection.

TWiV 425: All picornaviruses, all the time

The TWiVaniellos discuss a thermostable poliovirus empty capsid vaccine, and two cell genes that act as a switch between entry and clearance of picornavirus infection.

You can find TWiV #425 at, or listen below.

Click arrow to play
Download TWiV 425 (65 MB .mp3, 107 min)
Subscribe (free): iTunesRSSemail

Become a patron of TWiV!

A viral nucleus

Cell typesA unique feature of eukaryotic cells, which distinguishes them from bacteria, is the presence of a membrane-bound nucleus that contains the chromosomal DNA (illustrated; image credit). Surprisingly, a nucleus-like structure that forms during viral infection of bacteria is the site of viral DNA replication (link to paper).

During infection of Pseudomonas bacteria with the phage 2O1phi2-1, a separate compartment forms in which viral DNA replication takes place. A phage protein, gp105, makes up the outer layer of this compartment, which initially forms near one end of the cell, and then migrates to the center. The migration of the compartment takes place on a spindle made up of the tubulin-like protein PhuZ.

In addition to viral DNA, certain proteins gain entry into this compartment, including viral proteins involved in DNA and mRNA synthesis, and at least one host cell protein. Other proteins, such as those involved in translation and nucleotide synthesis, are excluded. This compartmentalization very much resembles that of the nucleus of eukaryotic cells.

Packaging of the viral DNA takes place on the surface of the viral nucleus. Empty phage capsids form at the bacterial cytoplasmic membrane, then migrate to the compartment where they attach firmly to the surface. By an unknown mechanism, DNA moves from the compartment into the capsid. Then  capsids are released from the surface to further mature in the cytoplasm. The completed phages are released from the cell upon bacterial lysis.

These fascinating observations raise a number of unanswered questions. Does infection with other phages lead to assembly of a viral nucleus? How do molecules selectively move in and out of the structure?

Perhaps the most interesting question relates to the origin of viruses and cells. According to one hypothesis, self-replicating, virus-like nucleic acids might have first appeared on Earth, followed by cells without a nucleus. Was the nucleus a viral invention?

Emerging Pathogen Surveillance with Jonna Mazet

I spoke with Jonna Mazet, PhD, UC Davis School of Veterinary Medicine, about emerging pathogen surveillance and public health. Dr. Mazet is the Principal Investigator and Global Director of the novel viral emergence early warning project, PREDICT, that has been developed with the US Agency for International Development’s (USAID) Emerging Pandemic Threats Program. Recorded at the Emerging Infectious Diseases A to Z (EIDA2Z) conference hosted by the National Emerging Infectious Diseases Laboratories (NEIDL).

TWiV 424: FLERVergnügen

Trudy joins the the TWiVlords to discuss new tests for detecting prions in the blood, and evidence showing that foamy retroviruses originated in the seas with their jawed vertebrate hosts at least 450 million years ago.

You can find TWiV #424 at, or listen below.

Click arrow to play
Download TWiV 424 (67 MB .mp3, 111 min)
Subscribe (free): iTunesRSSemail

Become a patron of TWiV!

Building an Ebola Virus Lab in Sierra Leone with Ian Goodfellow

I spoke with virologist Ian Goodfellow, whose laboratory works on noroviruses, about why he went to Sierra Leone to establish an Ebolavirus diagnostic and sequencing laboratory. The obstacles he encountered were considerable, but the results were very useful. Recorded at the Emerging Infectious Diseases A to Z (EIDA2Z) conference hosted by the National Emerging Infectious Diseases Laboratories (NEIDL).

A blood test for prion disease

PCMA for prionsA sensitive and specific blood test has been developed that could be used to limit the risk of transmission of prion disease through the blood supply (link to papers one and two).

Prion diseases, also known as spongiform encephalopathies, are uniformly fatal, chronic degenerative neurological diseases caused by misfolding of a cellular protein, PrPC. Transmissible encephalopathies may be acquired by organ transplant, receiving contaminated blood, or the ingestion of contaminated food.

In the 1990s a new spongiform encephalopathy, variant Creutzfeld-Jakob disease or vCJD, began to appear in Great Britain. Variant Creutzfeld-Jakob disease is caused by prions acquired by the consumption of cattle with bovine spongiform encephalopathy, also a prion disease affectionately known as mad cow disease. To date 231 cases of vCJD have been reported, mainly in the UK and France.

Although the spread of BSE has been controlled by surveillance and feeding restrictions, it is estimated that millions of people were exposed to BSE prions. The concern is that some of these individuals might be infected but show no symptoms of disease. If they donate blood, they may transmit infection to others. It is known that several cases of vCJD have been transmitted from infected blood donors, so further transmission is a major concern. So far prion diseases have only been diagnosed after death, by detection of conformationally altered prion proteins in the brain.

Two sensitive and specific assays for vCJD prions have now been developed that show promise for non-invasive pre-symptomatic diagnosis of the disease. They are both based on a technology called protein misfolding cyclic amplification (PMCA, illustrated; image copyright ASM Press, 2015). A small amount of the normal human prion protein, PrPC (produced in transgenic mice) is mixed with plasma. The samples are incubated to allow formation of prion oligomers, followed by disruption by a pulse of sonication to disrupt the oligomers. The cycle is repeated multiple times, much like polymerase chain reaction (PCR) which is used to amplify small amounts of DNA. Prions are detected by western blot analysis after treatment with proteinase K. The misfolded, pathogenic prions, PrPSC , are not completely digested with this enzyme.

In one study, PMCA was used to analyze blood samples from 14 cases of vCJD and 153 controls, which included healthy individuals and those with other neurological diseases, including sporadic CJD (sCJD – not caused by ingestion of contaminated beef). All 14 samples from cases of vCJD were positive in the PMCA assay, but not any of the other samples.

In a second study, the PMCA assay was positive in samples from all 18 patients with vCJD. Of 134 control samples, just one was positive for vCDJ, from a patient with sCJD. Furthermore, the assay detected vCJD prions in archived blood samples from donors who gave blood before developing symptoms of the disease.

These findings suggest that the new assays can detect vCJD prions in the blood before the appearance of the neurological symptoms of spongiform encephalopathy. While additional samples must be analyzed to validate the results, they are nonetheless promising as a way to prevent spread of the disease via the blood supply. Unfortunately, if you are diagnosed with vCJD by one of these assays, that is the only positive outcome – there are as yet no treatments for any spongiform encephalopathy.