Antibodies aid dengue and Zika virus infection

Antibody dependent enhancementFlaviviruses are unusual because antibodies that cross-react with different viruses can enhance infection and disease. This property, called antibody-dependent enhancement or ADE, has been documented to occur among the four serotypes of dengue virus. It has implications for infection with or vaccination against Zika virus or dengue virus.

Earlier this year (virology blog link) it was shown that antibodies to dengue virus – in the form of serum from infected patients, or two human monoclonal antibodies – bind to Zika virus and can enhance infection of Fc-receptor bearing cells (Fc receptors bind the antibody molecule, allowing uptake into cells – illustrated). When the antibodies to dengue virus were omitted, Zika virus barely infected these cells. The conclusion is that dengue antibodies enhance infection of cells in culture by Zika virus.

This early work was first published as a preprint on the bioRxiv server – which lead some to criticize me for discussing the work before peer review. However, I subjected the paper to my own peer review, of which I am entirely capable, and decided it was worthy of discussion on this blog.

The results have now been confirmed by an independent group (paper link). Sera from patients that were infected with dengue virus, as well as dengue virus specific human monoclonal antibodies, were shown to bind Zika virus and enhance infection of Fc receptor bearing cells. These are the same findings of the group who first published on bioRxiv. That paper still has not been published – apparently it is mired in peer review, with many new experiments requested. I do hope that none of the authors of the second paper are involved in delaying its publication – something that happens all too often in science. As a colleague once remarked, ‘the main function of peer review is to prevent your competitors from publishing their work’.

Whether or not antibodies to dengue virus enhance Zika virus disease in humans is an important unanswered question.

If you are wondering whether antibodies to Zika virus can enhance dengue virus infection, the answer is yes (paper link). Monoclonal antibodies were isolated from four Zika virus-infected patients, and shown to enhance infection of Fc receptor bearing cells with either Zika virus or dengue virus. Furthermore, administration of these antibodies to mice before infection with dengue virus led to severe disease and lethality, a demonstration of antibody-dependent enhancement in an animal model.

Of interest is the finding that ADE mediated lethality in this mouse model can be completely prevented by co-administering the same antibody that has been modified to block binding to Fc receptors on cells. This result suggests a modality for treating patients with enhanced disease caused by either dengue virus or Zika virus.

These observations suggest that we need to be careful when deploying vaccines against Zika virus or dengue virus – it is possible that the antibody response could enhance disease. Recently a dengue virus vaccine called Dengvaxxia was approved for use in Brazil, Mexico, and the Philippines. However, the vaccine is not licensed for use in children less than 9 years of age because in clinical trials, immunization lead to more severe disease after infection compared with non-immunized controls. Analysis of the clinical trial data (paper link) indicates that seronegative individuals of all ages were at increased risk for developing severe disease that requires hospitalization. The authors suggest that severe disease is a consequence of enhancement of infection caused by antibodies induced by the vaccine (see CIDRAP article for more information).

These observations lead to the question of whether immunization against dengue and Zika viruses might enhance disease caused by either virus. Could a solution to this potential problem be to use a vaccine that combines the four serotypes of dengue virus with Zika virus? If so, the dengue virus component should not be Dengvaxia, but possibly another vaccine (e.g. TV003 – virology blog link) that does not induce disease enhancing antibodies.

Zika virus vaccine

The first experimental Zika virus vaccine has been published, and in this episode of Virus Watch, I explain how it works – it’s a DNA vaccine – and I compare it with all the other vaccines out there.

TWiV 399: Zika la femme

The latest Zika virus news from the ConTWiVstadors, including a case of female to male transmission, risk of infection at the 2016 summer Olympics, a DNA vaccine, antibody-dependent enhancement by dengue antibodies, and sites of replication in the placenta.

You can find TWiV #399 at, or listen below.

Click arrow to play
Download TWiV 399 (75 MB .mp3, 103 min)
Subscribe (free): iTunesRSSemail

Become a patron of TWiV!

A herpesvirus associated with female infertility

HHV-6Viruses that replicate in the male or female reproductive tract are considered to be potential causes of human infertility. Several herpesviruses have been implicated in male infertility, and now human herpesvirus 6A (HHV-6A) has been found in endometrial cells of women with unexplained infertility (paper link).

HHV-6 was only recently discovered (1986) and is now known to occur as two variants, HHV-6A and HHV-6B. The latter is a major cause of exanthem subitum, a rash of infants, but no disease has been clearly associated with HHV-6A. These viruses are transmitted to infants early in life via saliva, from mother to child, from siblings, or from other infants at day care centers. Seroprevalence studies indicate that almost all children are infected with these viruses by 2 years of age.

To determine if HHV-6 might be a cause of infertility, a study (paper link) was conducted of 30 women with unexplained primary fertility, and 36 women with at least one previous pregnancy. HHV-6B DNA was detected in PBMC from both infertile and fertile groups (25 and 28%, respectively); HHV-6A DNA was not detected. In contrast, endometrial epithelial cells from 13/30 (43%) infertile women were positive for HHV-6A DNA; this viral DNA was not detected in endometrium of fertile women. When placed in culture, endometrial epithelial cells produced viral early and late proteins, suggesting the presence of infectious virus.

Presence of HHV-6A DNA in endometrial epithelial cells was also associated with an altered hormonal and immune environment. Estradiol levels were higher in infected versus uninfected infertile women. The authors suggest that higher levels of this hormone could be involved in allowing HHV-6A infection of the endometrium.

Levels of a specific type of uterine NK cell were lower in HHV-6A positive women, and IL-10 (a Th2 cytokine) was elevated while IFN-gamma (a Th1 cytokine) was decreased. There were no differences in the levels of these cells and cytokines in peripheral blood. These changes are consistent with an increase in the ratio of Th1/Th2 responses that has been documented in female infertility.

The authors also observed enhanced endometrial NK cell responses to HHV-6A in infected but not uninfected women, together with an increase in the number of these cells that are activated when cultured with HHV-6A infected cells.

I wonder what was the source of HHV-6A in the endometrium, as the virus was not detected in blood. Was the infection recently acquired, or did it occur years before, with the virus establishing a chronic infection in the uterus?

The results suggest that HHV-6A infection of the endometrium triggers an abnormal NK cell and cytokine profile, which in turn leads to a uterine environment that is not compatible with fertility. The results need to be confirmed with studies of additional fertile and infertile women. It would also be useful to have an animal model of HHV-6A infection of the endometrium, which could lead to mechanistic work to determine how virus infection causes infertility.

Image: Electron micrograph of HHV-6 (image credit)

TWiV 398: Permission to be intuitive

Vincent speaks with Sandy Weller about her career and her work on the mechanisms of synthesis, maturation, cleavage and packaging of viral DNA genomes.

You can find TWiV 398 at, or listen/watch below.

Click arrow to play
Download TWiV 398 (36 MB .mp3, 49 min)
Subscribe (free): iTunesRSSemailGoogle Play Music

Become a patron of TWiV!

Congress fails on Zika virus

Zika virusAndrew W. Gurman, M.D., President of the American Medical Association, has expressed disappointment in the failure of Congress to support the US public health response to Zika Virus:

At a time when concerns continue to mount about the nation’s readiness to protect the public from the Zika virus, the AMA is disappointed by Congress’ failure to pass legislation before adjourning for summer recess that would provide the resources necessary for our country to respond to this looming public health crisis.

Without ensuring there are sufficient resources available for research, prevention, control and treatment of illnesses associated with the Zika virus, the United States will be ill-equipped to deploy the kind of public health response needed to keep our citizens safe and healthy—especially since the spread of mosquito-borne illness is accelerated during the summer months.

I could not agree more with the AMA – Congress has so far failed to do the right thing with respect to Zika virus. Even if the virus does not spread within the continental United States, this country has an obligation to be a leader in scientific research that would benefit the entire world. Zika virus is clearly a threat to other parts of the globe, and by refusing to fund research on this virus, Congress is sending the message that it doesn’t care about the health problems of others.

TWiV 396: Influenza viruses with Peter Palese

TWiVVincent speaks with Peter Palese about his illustrious career in virology, from early work on neuraminidases to universal influenza virus vaccines, on episode #396 of the science show This Week in Virology.

You can find TWiV #396 at, or listen below.

Click arrow to play
Download TWiV 396 (54 MB .mp3, 74 min)
Subscribe (free): iTunesRSSemail

Do giant viruses have a CRISPR-like immune system or a protein restriction factor?

Zamilon virophageA battle is brewing between two research groups in Marseille, France that are involved in the discovery and study of giant viruses. Didier Raoul and colleagues believe that they have discovered a CRISPR-like, DNA based defense system in mimivirus that confers resistance to virophage (paper link). Claverie and Abergel disagree: they think that the defense system involves proteins, not nucleic acids (paper link).

Virophages are DNA viruses that can only replicate in cells infected by giant viruses like mimivirus. Their name, which means ‘virus eater’, comes from the observation that they inhibit mimivirus replication. A specific virophage called Zamilon was discovered that can inhibit the replication of lineage B and C mimivirus but not lineage A.

Examination of the DNA sequences of 60 different mimivirus strains revealed that the genomes of lineage A contained a 28 nucleotide sequence identical to Zamilon virophage. This sequence was not found in any lineage B mimivirus and in only one out of 19 lineage C mimiviruses. In addition, a 15 nucleotide subset of this sequence is repeated four times in the lineage B and C mimivirus genomes.

Near the 15 nucleotide Zamilon-derived repeated sequences in lineage B and C mimivirus genomes are genes encoding several proteins related to components of the bacterial CRISPR-Cas system. These include a nuclease, an RNAse, and an ATP-dependent DNA helicase.

The CRISPR system provides defense against invading DNA. When a foreign DNA, such as a bacteriophage genome, enters a bacterial cell, some is fragmented and integrated into the CRISPR locus as a ’spacer’ (sequences in the foreign DNA are called ‘protospacers’). Following transcription, CRISPR RNAs (crRNA) are processed by a multiprotein complex to produce ~60 nucleotide RNAs. When the spacer of a crRNA base pairs with a complementary sequence in an invading DNA molecule, CRISPR-associated endonucleases cleave the DNA. The integration of the sequences of the invading DNA into the host cell genome, from which they can be mobilized in the form of crRNAs, provides a form of “memory” and acquired immunity. It should be noted that there are six known types of CRISPR systems that differ in their components and mechanisms.

Because the CRISPR-Cas system is an adaptive immune system that protects bacteria and Archaea from virus infections and invasion of foreign DNA, the authors propose that they have discovered a new adaptive immune system that protects mimiviruses from virophage infection. They call this system mimivirus virophage resistance element, or MIMIVIRE.

The authors provide experimental support for their hypothesis by showing that silencing the genes encoding the endonuclease, the helicase, and the repeated insert using siRNA allows Zamilon replication in mimivirus-infected cells.

Claverie and Abergel think that Raoult and colleagues are wrong (paper link). They provide three reasons to dispute their findings, and ‘propose a simpler protein-based interaction model that explains the observed phenomena without having to extend the realm of adaptive immunity to the world of eukaryotic viruses, a revolutionary step that would require stronger experimental evidences.’

The first problem is that mimivirus and Zamilon virophage replicate in the same location in the infected cell, making a CRISPR-like defense system difficult to conceptualize. In contrast, CRISPR sequences reside in the bacterial genome, from which RNAs are produced that target the destruction of invading DNAs elsewhere in the cell.

The second problem is that the Zamilon sequences in the mimivirus genome are not regularly spaced or flanked by recognizable repeats, a hallmark of the CRISPR system (the name stands for ‘clustered regularly interspersed short palindromic repeats). However it should be noted that type VI CRISPR systems have no CRISPR locus and likely function via mechanisms that are different from other CRISPR systems.

Finally, Claverie and Abergel argue that there is no way for the proposed nucleic acid defense system to distinguish between the virophage and the virophage sequences in the mimivirus genome. In some CRISPR systems this discrimination is achieved by protospacer adjacent motifs (PAMs), short (2-5 nt) sequences next to the invader protospacer sequences that are recognized by the endonuclease complex guided by the crRNA. PAMs are not present in the bacterial genome, sparing it from endonucleolytic cleavage. Nevertheless, non PAM-based mechanisms of discriminating invader from host are known, for example, in the type III CRISPR system.

If Raoult and colleagues have not discovered a CRISPR-like mimivirus defense system, then why would silencing the genes encoding CRISPR-like proteins allow Zamilon replication? Claverie and Abergel think that it is not the 15 nucleotide Zamilon repeats that are important to mimivirus, but the encoded amino acids: Asp-Asn-Glu-Ser (DNES in one letter code). They believe that DNES is a motif present in proteins that block Zamilon replication by as yet unidentified mechanisms.

Many cellular proteins have been identified that interfere with virus replication, such as those encoded by interferon induced genes (ISGs). DNES containing proteins that inhibit Zamilon replication would be conceptually analogous, except that they are encoded by a virus, not the host.

Claverie and Abergele appear to have a strong case that mimivirus defense against Zamilon virophage is mediated by protein, not nucleic acid, but further experimentation is certainly needed to support their position. Nevertheless they recognize that the discovery by Raoult and colleagues “remains fascinating even if it falls short of demonstrating the existence of a CRISPR-Cas-like adaptive immune system”.

TWiV 395: The cancer thief

Vincent, Rich and Kathy speak with Stephen Russell about his career and his work on oncolytic virotherapy – using viruses to treat cancers. Recorded before an audience at ASV 2016 at Virginia Tech in Blacksburg, Virginia.

You can find TWiV #395 at, or listen/view below.

Click arrow to play
Download TWiV 395 (44 MB .mp3, 60 min)
Subscribe (free): iTunesRSSemailGoogle Play Music

Become a patron of TWiV!

TWiV 394: Cards in a hand

Vincent and Alan speak with Erica Ollmann Saphire about her career and her work on understanding the functions of proteins of Ebolaviruses, Marburg virus, and other hemorrhagic fever viruses, at ASM Microbe 2016 in Boston, MA.

You can find TWiV #394 at, or listen or watch the video below.

Click arrow to play
Download TWiV 394 (65 MB .mp3, 89 min)
Subscribe (free): iTunesRSSemailGoogle Play Music

Become a patron of TWiV!