From trivalent to bivalent oral poliovirus vaccine

Antibodies bound to poliovirusFor the first time since April of 1955, recipients of poliovirus vaccine will no longer receive all three serotypes. This past Sunday the World Health Organization orchestrated a synchronized switch from trivalent to bivalent oral poliovirus vaccine (OPV) in 150 countries.

The reason for the switch is clear: type 2 poliovirus was declared eradicated last year, and the only remaining cases are cause by vaccine-derived type 2 polioviruses. After oral administration of poliovirus vaccine, the virus replicates in the intestine, conferring immunity to subsequent infection. In all recipients of the vaccine the viruses lose the mutations that make them safe for humans. Consequently a small number of recipients, and their contacts, contract poliomyelitis from the vaccine.

To prevent further cases of poliomyelitis caused by circulating vaccine-derived polioviruses, WHO planned a synchronized, global switch from trivalent OPV to bivalent OPV on 17 April 2016. By July of 2016 all remaining stocks of the Sabin type 2 poliovirus strains, which are used to produce OPV, will also be destroyed.

My concern with this strategy is that type 2 vaccine-derived polioviruses continue to circulate. Whether they will continue to do so long enough to cause an outbreak of paralytic disease in the cohort of new infants that do not receive type 2 vaccine is a mattern of conjecture. In case there is an outbreak, monovalent type 2 oral poliovirus vaccine is being stockpiled by WHO. Of course, re-introduction of this vaccine will be accompanied by more circulating vaccine-derived poliovirus in the environment, and vaccine-associated disease, the very event WHO is trying to end with the trivalent to bivalent switch.

Type 3 poliovirus has not been isolated since 2012. Only type 1 poliovirus still causes outbreaks in two countries: Pakistan and Afghanistan. The inability to vaccinate in those countries, due to conflict, is delaying eradication. The recent killing of seven police officers who were protecting polio vaccinators by the Pakistani Taliban is an example of this difficulty.

Developing a great vaccine is not the only requirement for preventing infectious disease: you also have to be able to deploy it.

Image: Antibodies bound to poliovirus by Jason Roberts.

The switch from trivalent to bivalent oral poliovirus vaccine: Will it lead to polio?

bivalent OPVIn four months, 155 countries will together switch from using trivalent to bivalent oral poliovirus vaccine. Will this change lead to more cases of poliomyelitis?

There are three serotypes of poliovirus, each of which can cause paralytic poliomyelitis. The Sabin oral poliovirus vaccine (OPV), which has been used globally by WHO in the eradication effort, is a trivalent vaccine that contains all three serotypes.

In September 2015 WHO declared that wild poliovirus type 2 has been eradicated from the planet – no cases caused by this serotype had been detected since November 1999. However, in 2015, there were 9 cases of poliomyelitis caused by the type 2 vaccine. For these reasons WHO decided to remove the type 2 Sabin strain from OPV, and switch from trivalent to bivalent vaccine in April 2016.

After OPV is ingested, the viruses replicate in the intestinal tract, providing immunity to subsequent infection. During replication in the intestine, the vaccine viruses lose the mutations that prevent them from causing paralysis. Everyone who receives OPV sheds these revertant viruses in the feces. In rare cases (about one in 1.5 million) the revertant viruses cause poliomyelitis in the vaccine recipient (these cases are called VAPP for vaccine-associated paralytic poliomyelitis). Vaccine-derived polioviruses can also circulate in the human population, and in under-vaccinated populations, they can cause poliomyelitis.

There were 26 reported cases of poliomyelitis caused by the type 1 or type 2 vaccine viruses in 2015. Nine cases of type 2 vaccine-associated polio were detected in four countries: Pakistan, Guinea, Lao People’s Democratic Republic, and Myanmar. Removing the type 2 strain from OPV will eliminate vaccine-associated poliomyelitis in recipients caused by this serotype. When the US switched from OPV to the inactivated poliovaccine (IPV) in 2000, VAPP was eliminated.

The problem with the trivalent to bivalent switch is that vaccine-derived type 2 poliovirus is likely still circulating somewhere on Earth. The last two reported cases of type 2 vaccine-associated polio in 2015 were reported in Myanmar in October. The viruses isolated from these cases were genetically related to strains that had been circulating in the same village in April of the that year. In other words, type 2 vaccine-derived strains have been circulating for an extended period of time in Myanmar; they have been known to persist for years elsewhere. If these viruses continue to circulate past the time that immunization against type 2 virus stops, they could pose a threat to the growing numbers of infants and children who have not been immunized against this serotype.

Eventually as type 3, and then type 1 polioviruses are eradicated, it will also be necessary to stop immunizing with the respective Sabin vaccine strains. The switch from trivalent to bivalent vaccine in April 2016 is essentially an experiment to determine if it is possible to stop immunizing with OPV without placing newborns at risk from circulating vaccine-derived strains.

Over 18 years ago Alan Dove and I argued that the presence of circulating vaccine-derived polioviruses made stopping immunization with OPV a bad idea. We suggested instead a switch from OPV to IPV until circulating vaccine-derived viruses disappeared. At the time, WHO disagreeed, but now they recommend that all countries deliver at least one dose of IPV as part of their immunization program. Instead of simply removing the Sabin type 2 strain from the immunization programs of 155 countries, it should be replaced with the inactivated type 2 vaccine. This change would maintain immunity to this virus in children born after April 2016. Such a synchronized replacement is currently not in the WHO’s polio eradication plans. I hope that their strategy is the right one.

TWiV 36: Pandemic

twiv-200On episode #36 of the podcast “This Week in Virology”, Vincent, Alan, Dick, and Hamish Young discuss the 2009 influenza pandemic, first 2009 H1N1 vaccine, hunting mosquitoes with midges, vaccine-associated polio in India, and adenoviruses.

Click the arrow above to play, or right-click to download TWiV #36 or subscribe in iTunes or byemail.