TWiV 431: Niemann-Pick of the weak

The TWiVirions reveal bacteriophage genes that control eukaryotic reproduction, and the biochemical basis for increased Ebolavirus glycoprotein activity during the recent outbreak.

You can find TWiV #431 at, or listen below.

Click arrow to play
Download TWiV 431 (71 MB .mp3, 118 min)
Subscribe (free): iTunesRSSemail

Become a patron of TWiV!

TWiEVO: This Week in Evolution

TWiEVOTo a molecular biologist, the word ‘evolution’ evokes images of fossils, dusty rocks, and phylogenetic trees covering eons. The fields of molecular biology and evolutionary biology diverged during the twentieth century, but new experimental technologies have lead to a fusion of the two disciplines. The result is that evolutionary biologists have the unprecedented ability to evaluate how genetic change produces novel phenotypes that allow adaptation. It’s a great time to start a new podcast on evolution!

Molecular biology is an experimental approach that was born in 1953 with the discovery of the structure of DNA. Its goal is to understand how cells and organisms work at the level of biological molecules such as DNA, RNA, and proteins. Some of the experimental tools of molecular biology include recombinant DNA, nucleotide sequencing, mutagenesis, and DNA-mediated transformation. The experiments of molecular biology often involve simplified, or reductionist systems in which much of the complexity of nature is ignored. Variation in individuals, populations, and the environment are set aside. Data produced by the techniques of molecular biology can lead to decisive conclusions about cause and effect.

Evolutionary biology embraces variation, and in fact attempts to explain it. The basis for variation in organisms is usually inferred by associating phenotypes, sequences, and alleles. The problem with this approach is that alternative explanations are often plausible, and conclusions are rarely as decisive as those achieved with molecular biology. We can turn to Darwin’s finches as a good illustration of the difference between fields. Darwin hypothesized that variation in the beaks of finches was a consequence of diet, but how such variation occurred was unknown. It was not until 2004 that it was shown that beak shape and size could be controlled by two different genes.

The techniques of DNA sequencing, mutagenesis, and the ability to introduce altered DNA into cells and organisms have been the catalyst for the fusion of molecular biology and evolutionary biology into a new and far more powerful science, which Dean and Thornton call a ‘functional synthesis’. As a consequence, genotype can be definitively connected with phenotype, allowing resolution of fundamental questions in evolution that have been puzzles for many years.

Microbes are perfect subjects for study by evolutionary biologists, as they are readily manipulable and rapidly reproduce. However no organism is now very far from the eye of this new science. Subjects as diverse as insecticide resistance, coat color in mice, evolution of color vision, and much more are all amenable to scrutiny by the ‘functional synthesis’.

This Week in Evolution will cover all aspects of the functional synthesis, irrespective of organism. My co-host is Nels Elde, an evolutionary biologist at the University of Utah. Nels has appeared on This Week in Virology to discuss the evolution of virus-host conflict, and his lab’s story on the evolutionary battle for iron between mammalian transferrin and bacterial transferrin-binding protein was covered on This Week in Microbiology.

You can find This Week in Evolution at iTunes and at MicrobeTV.

TWiV 363: Eat flu and dyad

On episode #363 of the science show This Week in Virology, The TWiVers reveal influenza virus replication in the ferret mammary gland and spread to a nursing infant, and selection of transmissible influenza viruses in the soft palate.

You can find TWiV #363 at

TWiV 348: Chicken shift

On episode #348 of the science show This Week in Virology, Vincent and Rich discuss fruit fly viruses, one year without polio in Nigeria, and a permissive Marek’s disease viral vaccine that allows transmission of virulent viruses.

You can find TWiV #348 at

A WORD on the constraints of influenza virus evolution

NP evolutionEvolution proceeds by selection of mutants that arise by error-prone duplication of nucleic acid genomes. It is believed that mutations that are selected in a gene are dependent on those that have preceded them, an effect known as epistasis. Analysis of a sequence of changes in the influenza virus nucleoprotein provides clear evidence that stability explains the epistasis observed during evolution of a protein.

Evolutionary biologist John Maynard Smith used an analogy with a word game to explain how epistasis constrains the evolution of a protein. In this game, single letter changes are made to a four letter word to convert it to another valid word:


Although all the intermediates are valid words, the sequence of changes is important. For example, the G in GENE, if introduced into WORD would produce GORD which is not a word. D must be changed to E before W is changed to G. In a similar way mutations in a gene are likely to depend on the changes that have previously taken place.

Whether similar constraints affect protein evolution has been studied with the nucleoprotein (NP) of influenza virus. Between 1968 and 2007, 39 mutations appeared in the NP RNA of influenza virus H3N2. Because sequences of this viral RNA are available each year, it was possible to deduce the order in which these changes appeared in the viral genome (illustrated; figure credit). Plasmids encoding 39 different NP proteins were then constructed which represent viral NP sequences present from 1968 through 2007. All of the NP proteins were found to support similar levels of viral RNA synthesis.

The 39 mutations were then introduced singly into the NP RNA, and RNA synthesis was measured. Three of the altered proteins had large decreases in activity. Their presence also substantially reduced the growth of infectious viruses. However when these NP changes were combined with the amino acid changes that preceded it during evolution, replication was normal. The three NP changes that reduce viral RNA synthesis and replication also decrease the thermal stability of the protein.

These findings show that, from 1968-2007, three amino acid changes were fixed in the influenza virus NP protein whose deleterious effects on protein stability were compensated by previously accumulated changes in the protein. The three amino acids are located in a part of the protein that harbors sequences recognized by T cells. These changes likely allow the virus to escape the host immune response.

Protein stability clearly mediates the epistasis observed in the influenza virus NP protein. It will be important to determine which other protein properties determine the sequence of mutations that are fixed in a viral genome. Influenza viruses are ideal for this work because sequences of all of the viral RNAs are determined for multiple isolates on an annual basis. Studies of what regulates epistasis for other RNA and DNA viruses are also needed to provide an understanding of the constraints of viral evolution.

Why do viruses cause disease?

EvolutionVirulence, the capacity to cause disease, varies markedly among viruses. Some viruses cause lethal disease while others do not. For example, nearly all humans infected with rabies virus develop a disease of the central nervous system which ultimately leads to death. In contrast, most humans are infected with circoviruses with no apparent consequence. Is there a benefit for a virus to be virulent?

One explanation for viral virulence is that it facilitates transmission. However, a comparison of infections caused by two enteric viruses, poliovirus and norovirus, does not support this general view. Both viruses infect the gastrointestinal tract and are spread efficiently among humans by fecal contamination. However, norovirus infection causes vomiting and diarrhea, while poliovirus infection of the intestine is without symptoms (the rare invasion of the nervous system, and subsequent paralysis, is an accidental dead end). Both viruses have successfully colonized humans for many years, so why does only one of them cause gastrointestinal tract disease?

Two recent studies of bacterial virulence provide some clues about the evolution of virulence. In one a commensal strain of Escherichia coli was serially propagated in the presence of macrophages, which are cells of the immune system that take up and destroy the bacteria. After many such passages, bacterial clones were isolated that escape phagocytosis and killing by macrophages. These clones had also acquired increased pathogenicity in mice. In other words, the genetic changes that allowed the bacteria to evade the immune response also lead to increased virulence.

In another example of evolution to virulence, it was found the the bacterium Pseudomonas aeruginosa can sense the presence of competing gram-positive bacteria because the latter shed the cell wall component peptidoglycan. In response to this molecule, P. aeruginosa secretes proteins that kill the other bacteria. These secreted proteins also make the bacterium more virulent in a host – in their absence, the bacteria are less virulent. In other words, P. aeruginosa damages its host in an attempt to remove nearby bacterial competitors.

In both bacterial examples, virulence can be viewed as collateral damage: the consequence of evading the immune response, or killing off competitors. Being virulent was not the primary goal. This explanation for bacterial virulence is straightforward and compelling: virulence is not directly selected for during evolution but comes along for the ride. Can it be applied to viruses?

All eukaryotic viruses must encode at least one protein that antagonizes host immune responses, otherwise they would be eliminated. These immune evasion proteins are certainly virulence factors: in general, when they are deleted or altered, the capacity of the virus to cause disease in a host is reduced. Like bacterial virulence, viral virulence might be collateral damage incurred by having to evade immune responses. This hypothesis is attractive but seems overly simplistic. If the ubiquitous and benign circoviruses did not evade host responses, then they would be eliminated from the human population.

The reasons why some viruses are virulent and others are not remain elusive. It is possible to reduce viral virulence by mutation, but this type of experiment does not reveal why viruses cause disease. The inverse experiment would be more informative: to select from a population of avirulent virus those that can cause disease. The results of such an experiment would help to identify the selection pressures that allow viruses to evolve to virulence.

Nature just is

What better way to start 2013 than with a meaningful quote from Jon Yewdell:

We might think we know how Nature should work, and we certainly gain insight into Nature by using our logical powers (endowed by Nature) to predict how Nature might work, but ultimately, we have to understand the way Nature does work. Nature, in all its glorious complexity, is completely impassive. It cares not a whit what we may or may not believe. Nature just is.

It’s astounding how many scientists don’t really get this.

Jon’s statement includes the subject of this blog – viruses – which have no intentions or desires. Viruses are the product of mutation and selection, the goal of which is simply existence. Evolution does not move viruses along a trajectory aimed at perfection. Change comes about by eliminating those viruses that are not well adapted for the current conditions, not by building something that will fare better tomorrow. Viruses just are.

TWiV 190: The second ferret of the Apocalypse

On episode #190 of the science show This Week in Virology, Vincent, Alan, and Kathy review selection of influenza H5N1 viruses that can transmit among ferrets by aerosol.

You can find TWiV #190 at

TWiV 146: Draco’s potion

dracoHosts: Vincent RacanielloRich Condit, and Abbie Smith

Vincent, Rich, and Abbie review a broad spectrum antiviral protein, and selective pressure applied by a failed HIV-1 vaccine.

Click the arrow above to play, or right-click to download TWiV 146 (78 MB .mp3, 107 minutes).

Subscribe to TWiV (free) in iTunes , at the Zune Marketplace, by the RSS feed, by email, or listen on your mobile device with the Microbeworld app.

Links for this episode:

Weekly Science Picks

Vincent – Hypothetical Risk: Cambridge City Council’s Hearings on Recombinant DNA Research
Rich –
Z Corporation 3-D printer (YouTube)

Listener Pick of the Week

JimDo-it-yourself DNA extraction (Citizen Scientist Quarterly)

Send your virology questions and comments (email or mp3 file) to, or call them in to 908-312-0760. You can also post articles that you would like us to discuss at and tag them with twiv.

The trajectory of evolution

quasispecies-selectionScientists and philosophers have long debated the trajectory of evolution. Some of the questions they consider include: is there a predictable direction for evolution, and if there is, what is the pathway? Are there evolutionary dead ends?

Viruses are excellent subjects for the study of evolution: they have short generation times, high yields of offspring, and prodigious levels of mutation, recombination, and reassortment. Furthermore, selection pressures can be readily applied in the laboratory, and may be often be identified in nature.

When studying evolution of viruses, it is important to avoid judging outcomes as ‘good’ or ‘bad’. Anthropormorphic assessments of virus evolution come naturally to humans, but concluding that viruses become ‘better adapted’ to their hosts, for example, fails to recognize the main goal of evolution: survival. Or, in the case of the non-living viruses, existence.

Evolution does not move a viral genome from simple to complex, or along a trajectory aimed at perfection. Change comes about by eliminating those viruses that are not well adapted for the current conditions, not by building something that will fare better tomorrow.