Permissive vaccines and viral virulence

chicken farmA permissive vaccine prevents disease in the immunized host, but does not block virus infection. Would a permissive vaccine lead to the emergence of more virulent viruses?

This hypothesis is based on the notion that viruses which kill their hosts too quickly are not efficiently transmitted, and are therefore removed by selection. However a vaccine that prevents disease, but not viral replication in the host, would allow virulent viruses to be maintained in the host population. It has been suggested that in this scenario, viruses with increased virulence would be selected if such a property aids transmission between hosts.

On the surface this hypothesis seems reasonable, but in my opinion it is flawed. One problem is that increased transmission might not always be associated with increased virulence. The more serious flaw lies in making anthropomorphic assessments of what we think viruses require, such as concluding that increased viral transmission is a desired trait. Our assumptions fail to recognize the main goal of evolution: survival. Evolution does not move a virus along a trajectory aimed at perfection. Change comes about by eliminating those viruses that are not well adapted for the current conditions, not by building a virus that will fare better tomorrow. All the viruses on Earth today transmit well enough, or they would not be here; yet some kill their hosts clearly much faster than others. The fact is that humans have little understanding of what drives virus evolution in large populations. Our assumptions of what constitute the selective forces are usually tainted by anthropomorphism.

This long preamble is an introduction to a series of findings which are purported to support the idea that permissive vaccines (the authors call them ‘leaky’ and ‘imperfect’ vaccines but I dislike both names because they imply defects) can lead to the selection of more virulent viruses. The subject of the paper is Marek’s disease virus (MDV), a herpesvirus that infects chickens. MDV is shed from feather follicles of infected chickens and is spread to other birds when then inhale contaminated dust. Vaccines have been used to prevent MDV infection since the early 1970s. These vaccines prevent disease, but do not block viral replication, and vaccinated, infected birds can shed wild type virus. The virulence of MDV has been increasing since the 1950s, initially from a paralytic disease, to paralysis and death. The authors wonder if the use of permissive Marek’s vaccines has lead to the selection of more virulent viruses.

To address their hypothesis, the authors inoculate vaccinated or unvaccinated chickens with a series of MDV isolates that range from low to high virulence. Unvaccinated chickens inoculated with the most virulent MDV died within a week and shed little virus. In contrast, most vaccinated birds survived infection with virulent viruses, and shed virus for the length of the experiment, 56 days.

A transmission experiment was done to determine if shed virus could infect other birds. The authors infected vaccinated or unvaccinated birds and asked if sentinel, unvaccinated chickens became infected. Unvaccinated birds died within 10 days after infection with virulent MDV, and did not transmit infection. In contrast, vaccinated birds survived at least 30 days, and co-housed sentinel animals became infected and died.

The experiments are well done and the conclusions are clear: more virulent Marek’s disease viruses replicate longer in vaccinated than unvaccinated chickens, and can be readily transmitted to other chickens. But these results do not prove that more virulent MDV arose because of permissive vaccines. Nor do the results prove in general that leaky vaccines lead to selection of more virulent viruses. The results simply show that a vaccine that does not prevent replication will allow transmission of virulent viruses.

To prove that vaccinated chickens can allow the selection of more virulent viruses, vaccinated chickens could be infected with an avirulent virus, and the shed virus collected and used to infect additional, vaccinated birds. This process could be repeated to determine if more virulent viruses arise. While the results of this gain-of-function experiment would be informative, they would be done in a controlled laboratory setting which would not duplicate all the selective forces present on a poultry farm.

The authors note that most human vaccines do prevent replication of infecting virus. They do not mention the one important exception: the Salk poliovirus vaccines. People who are immunized with the Salk vaccine can be infected with poliovirus, which will then replicate in the intestines, be shed in the feces, and transmitted to others. This behavior has been well documented in human populations, yet the virulence of poliovirus has not increased for the 60 years during which the Salk vaccine has been used.

I do not feel that these experimental results have general implications for the use of any animal vaccine. It is unfortunate that the work has been covered in many news sources with the incorrect implication that vaccines may be responsible for the emergence of more virulent viruses.

TWiV 336: Brought to you by the letters H, N, P, and Eye

On episode #336 of the science show This Week in Virology, the TWiVsters explore mutations in the interferon pathway associated with severe influenza in a child, outbreaks of avian influenza in North American poultry farms, Ebolavirus infection of the eye weeks after recovery, and Ebolavirus stability on surfaces and in fluids.

You can find TWiV #336 at

TWiV 230: Gene goes to Washington, flu chickens out

On episode #230 of the science show This Week in Virology, Vincent, Rich, Alan and Kathy review H7N9 infections in China, the debate over patenting genes, and receptor-binding by ferret-transmissible avian H5 influenza virus.

You can find TWiV #230 at

Human infections with avian influenza H7N9 virus from wet market poultry

Results of a study of four patients in Zhejiang, China, who developed influenza H7N9 virus infection suggests sporadic poultry-to-human transmission:

We diagnosed avian influenza A H7N9 in all four patients (who were epidemiologically unlinked), two of whom died and two of whom were recovering at the time of writing. All patients had histories of occupational or wet market exposure to poultry. The genes of the H7N9 virus in patient 3’s isolate were phylogenetically clustered with those of the epidemiologically linked wet market chicken H7N9 isolate. These findings suggest sporadic poultry-to-person transmission.

The four patients had occupational contact with poultry: one was a chef, one slaughtered and cooked live market poultry, and two bought live market poultry. Each had contact with poultry 3-8 days before onset of disease, and all were positive for influenza H7N9 virus by polymerase chain reaction of sputum or throat swab samples (virus was cultured from three of the four patients). Two of five pigeons and four of 20 chickens from two different wet markets were also positive for influenza H7N9 virus. Sequence analysis of virus recovered from patient 3 revealed that the HA and NA genes are nearly identical with those of two viruses isolated from epidemiologically linked chickens (1673 of 1683 bases for HA, 1394 of 1398 bases for NA).

While these H7N9 infections might have been acquired from poultry, the origin of other infections in different areas of China (>100) is unclear. According to the Ministry of Agriculture, as of 26 April 2013, only 46 of the 68,060 samples collected from poultry markets, habitats, farms and slaughterhouses across the country have tested positive for H7N9 virus, and none of these positive samples have been from poultry farms.

Avian influenza H7N9 viruses isolated from humans: What do the gene sequences mean?

Influenza A virionThere have been over 60 human infections with avian influenza virus H7N9 in China, and cases have been detected outside of Shanghai, including Beijing, Zhejiang, Henan, and Anhui Provinces. Information on the first three cases has now been published, allowing a more detailed consideration of the properties of the viral isolates.

The first genome sequences reported were from the initial three H7N9 isolates: A/Shanghai/1/2013, A/Shanghai/2/2013, and A/Anhui/1/2013. These were followed by genome sequences from A/Hongzhou/1/2013 (from a male patient), A/pigeon/Shanghai/S1069/2013), A/chicken/Shanghai/S1053/2013), and A/environment/Shanghai/S1088/2013, the latter three from a Shanghai market.

Analysis of the viral genome sequences reveals that all 8 RNA segments of influenza A/Shanghai/1/2013 virus are phylogenetically distinct from A/Anhui/1/2013 and A/Shanghai/2/2013, suggesting that the virus passed from an animal into humans at least twice. Similar viruses have been isolated from pigeons and chickens, but the source of the human infections is not known. There is as yet no evidence for human to human transmission of the H7N9 viruses, and it seems likely that all of the human infections are zoonotic – transmission of animal viruses to humans. Since the H7N9 viruses are of low pathogenicity in poultry, infected animals may not display disease symptoms, further facilitating transmission to humans.

The RNA sequences reveal that the H7N9 viruses isolated from humans are all triple reassortants, which means that they contain RNA segments derived from three parental viruses. The gene encoding the hemagglutinin protein (HA) is most closely related to the HA from A/duck/Zhejiang/12/2011 (H7N3), while the NA gene is most similar to the NA gene from A/wild bird/Korea/A14/2011 (H7N9). The remaining 6 RNA segments are most related to genes from A/brambling/Beijing/16/2012-like viruses (H9N2). The type of animal(s) in which the mixed infections took place is unknown.

Some observations on the relatedness of these sequences:

  • A/Shanghai/2/2013, A/Anhui/1/2013, and A/Hangzhou/1/2013 were isolated in distant cities yet have over 99% identity. The pigeon, chicken, and environmental isolates are also very similar except for one gene of A/pigeon/Shanghai/S1069/2013. Long-range shipping of infected poultry might explain these similarities.
  • There are 53 nucleotide differences between A/Shanghai/1/2013 and A/Shanghai/2/2013. Perhaps A/Shanghai/1/2013 and the remaining viruses originated from different sources.

When the gene sequences of these human viral isolates are compared with closely related avian strains, numerous differences are revealed. The locations of the proteins in the influenza virion are shown on the diagram; click for a larger version (figure credit: ViralZone).

  • All seven H7N9 viruses do not have multiple basic amino acids at the HA cleavage site. The presence of a basic peptide in this location allows the viral HA to be cleaved by proteases that are present in most cells, enabling the virus to replicate in many organs. Without this basic peptide, the HA is cleaved only by proteases present in the respiratory tract, limiting replication to that site. This is one reason why the H7N9 viruses  have low pathogenicity in poultry.
  • All seven viruses have a change at HA amino acid 226 (Q226L) which could improve binding of the viruses to alpha-2,6 sialic receptors, which are found throughout the human respiratory tract. Avian influenza viruses prefer to bind to alpha-2,3 sialic acid receptors. This observation suggests that the H7N9 isolates should be able to infect the human upper respiratory tract (alpha-2,3 sialic acid receptors are mainly located in the lower tract of humans). However, viruses which bind better to alpha-2,3 sialic acids still bind to alpha-2,6 receptors and can infect humans.
  • All seven viruses have a change at HA amino acid 160 from threonine to alanine (T160A). This change, which has been identified in other circulating H7N9 viruses, prevents attachment of a sugar to the HA protein and could lead to better recognition of human (alpha-2,6 sialic acid) receptors.
  • Five amino acids are deleted from the neuraminidase (NA), the second viral glycoprotein, in all seven viruses. In avian H5N1 influenza virus this change may influence tropism for the respiratory tract and enhance viral replication, and might regulate transmission in domestic poultry. This change is believed to be selected upon viral replication in terrestrial birds.
  • One of the viruses (A/Shanghai/1/2013) has an amino acid change in the NA glycoprotein associated with oseltamivir resistance (R294K).
  • An amino acid change in the PB1 gene, I368V, is known to confer aerosol transmission to H5N1 virus in ferrets.
  • An amino acid change in the PB2 gene, E627K, is associated with increased virulence in mice, higher replication of avian influenza viruses in mammals, and respiratory droplet transmission in ferrets.
  • Changes of P42S in NS1 protein, and N30D and T215A in M1 are associated with increased virulence in mice, but these changes are also observed in circulating avian viruses.
  • All seven viruses have an amino acid change in the M2 protein known to confer resistance to the antiviral drug amantadine.
  • All seven viruses lack a C-terminal PDZ domain-binding motif which may reduce the virulence of these viruses in mammals.

For the most part we do not know the significance of any of the amino acid changes for viral replication and virulence in humans.

I believe that these H7N9 viruses might take one of two pathways. If they are widespread in birds, they could spread globally and cause sporadic zoonotic infections, as does avian influenza H5N1 virus. Alternatively, the H7N9 viruses could cause a pandemic. Influenza H7N9 virus infections have not occurred before in humans, so nearly everyone on the planet is likely susceptible to infection. Global spread of the virus would require human to human transmission, which has not been observed so far. Some human to human transmission of avian H7N7 influenza viruses was observed during an outbreak in 2003 in the Netherlands, but those viruses were different from the ones isolated recently in China. Whether or not these viruses will acquire the ability to transmit among humans by aerosol is unknown and cannot be predicted. If a variant of H7N9 virus that can spread among humans arises during replication in birds or humans, it might not have a chance encounter with a human, or if it did, it might not have the fitness to spread extensively.

What also tempers my concern about these H7N9 viruses is the fact that the last influenza pandemic (H1N1 virus) took place in 2009.  No influenza pandemics in modern history are known to have taken place 4 years apart, although only 11 years separated the 1957 (H2N2) and 1968 (H3N2) pandemics. I suppose that is not much consolation, as there are always exceptions, especially when it comes to viruses.

Meanwhile a vaccine against this H7N9 strain is being prepared (it will be months before it is ready), surveillance for the virus continues in China and elsewhere, and health agencies ready for a more extensive outbreak. These are not objectionable courses of action. But should this be our response to every zoonotic influenza virus infection of less than 100 cases?


Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus.

Genetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013.

TWiV 227: Lacks security and bad poultry

On episode #227 of the science show This Week in Virology, the complete TWiV team reviews the controversial publication of the HeLa cell genome, a missing vial of Guanarito virus in a BSL-4 facility, and human infections with avian influenza H7N9 virus.

You can find TWiV #227 at