TWiV 459: Polio turns over a new leaf

The TWiV team reviews the first FDA approved gene therapy, accidental exposure to poliovirus type 2 in a manufacturing plant, and production of a candidate poliovirus vaccine in plants.

Click arrow to play
Download TWiV 459 (63 MB .mp3, 105 min)
Subscribe (free): iTunesRSSemail

Become a patron of TWiV!

Show notes at microbe.tv/twiv

TWiV 435: Two virus particles walk into a cell

The TWiVome discuss the blood virome of 8,420 humans, and thoroughly geek out on a paper about the number of parental viruses in a plaque.

You can find TWiV #435 at microbe.tv/twiv, or listen below.

Click arrow to play
Download TWiV 435 (73 MB .mp3, 121 min)
Subscribe (free): iTunesRSSemail

Become a patron of TWiV!

The purity of plaques

dose-response-plaque-assayThe plaque assay – my favorite assay in the world – is a time-honored procedure to determine the number of viruses in a sample, and to establish clonal virus stocks. The  linear relationship between the number of infectious particles and the plaque count (illustrated; image credit) shows that one infectious particle is sufficient to initiate infection. Despite the one-hit kinetics of plaque formation, could more than one virus contribute to a plaque?

To answer this question, ten genetically marked polioviruses were mixed and subjected to plaque assay. Of 123 plaques, 6 (4.9%) contained more than one virus. Similar results were found when polioviruses with phenotypic markers were studied.

Examination of poliovirus stocks by electron microscopy revealed both single particles and aggregates of 2 to 10 particles. Increasing particle aggregation by treatment of viruses with low pH increased co-infection frequency, indicating that aggregation of particles leads to multiply infected cells.

When these experiments were repeated with mutagenized polioviruses, the co-infection frequency increased – probably because recombination and complementation between two defective genomes leads to rescue of the defects.

Do these findings indicate that poliovirus plaque formation does not follow one-hit kinetics? The results do not prove that, in unmutagenized virus stocks, more than one poliovirus is needed to form a plaque. They only show that a small percentage of plaques contain more than one poliovirus. The presence of more than one poliovirus in 5-7% of plaques is likely a consequence of virion aggregation. It would be informative to prepare poliovirus stocks with no aggregates, and determine if co-infected plaques are still observed.

Some viruses of plants and fungi follow two-hit kinetics: two virus particles, with two different genomes, are needed for infection (illustrated). Assuming that 4-7% of poliovirus plaques are initiated by multiple viruses, the resulting plots deviate only slightly from a straight line, and do not resemble the curves of two-hit kinetics.

What are the implications of these findings for the use of plaque assays to produce clonal virus stocks? Even though the frequence of multiply infected plaques is low, the possibility of producing a mixed population is still possible, if only one plaque purification is done. In our laboratory we have always repeated the plaque purification three times, which should ensure that no multiply infected plaques are isolated.

Update 3/31/17: I would like to see similar experiments done with other viruses, to see how often multiple viruses can be found in a plaque. Examples included hepatitis A virus, which is released from cells in membranous vesicles containing multiple virus particles; and enveloped viruses, which might aggregate more frequently than naked viruses.

I looked back at the 1953 publication in which Dulbecco and Vogt first described the plaque assay for poliovirus, and demonstrated one hit kinetics. The dose-response curve clearly shows one-hit kinetics with little deviation of the individual data points from a straight line.

plaque dose response

Linear relationship between the number of plaques and the virus concentration. Image credit.

 

TWiV 425: All picornaviruses, all the time

The TWiVaniellos discuss a thermostable poliovirus empty capsid vaccine, and two cell genes that act as a switch between entry and clearance of picornavirus infection.

You can find TWiV #425 at microbe.tv/twiv, or listen below.

Click arrow to play
Download TWiV 425 (65 MB .mp3, 107 min)
Subscribe (free): iTunesRSSemail

Become a patron of TWiV!

Three countries endemic for poliovirus

poliovirusI cannot let September pass without noting that 34 years ago this month, I arrived at Columbia University to start my laboratory to do research on poliovirus (pictured). That virus is no longer the sole object of our attention – we are wrapping up some work on poliovirus and our attention has shifted elsewhere. But this is a good month to think about the status of the poliovirus eradication effort.

So far this year 26 cases of poliomyelitis have been recorded – 23 caused by wild type virus, and three caused by vaccine-derived virus. At the same time in 2015 there were 44 reported cases of polio – small progress, but, in the words of Bill Gates, the last one percent is the hardest.

One of the disappointments this year is Nigeria. It was on the verge of being polio-free for one year – the last case of type 1 poliovirus in Nigeria had been recorded in July of 2014. In August the government reported that 2 children developed polio in the Borno State. The genome sequence of the virus revealed that it had been circulating undetected in this region since 2011. Due to threats from militant extremists, it has not been possible for vaccination teams to properly cover this area, and surveillance for polioviruses has also been inefficient. The virus can circulate freely in a poorly immunized population, and as only 1% of infections lead to paralysis, cases of polio might have been missed.

The conclusion from this incident is that the declaration that poliovirus is no longer present in any region is only as good as the surveillance for the virus, which can never be perfect as all sources of infection cannot be covered.

Of the 26 cases of polio recorded so far in 2016, most have been in Afghanistan and Pakistan (9 and 14, respectively). It is quite clear that conflict has prevented vaccination teams from immunizing the population: in Pakistan, militants have attacked polio teams during vaccination campaigns.

Recently 5 of 27 sewage samples taken from different parts of the province of Balochistan in Pakistan have tested positive for poliovirus. Nucleotide sequence analysis revealed that the viruses originated in Afghanistan. The fact that such viruses are present in sewage means that there are still individuals without intestinal immunity to poliovirus in these regions. In response to this finding, a massive polio immunization campaign was planned for the end of September in Pakistan. This effort would involve 6000 teams to reach 2.4 million children. Apparently police will be deployed to protect immunization teams (source: ProMedMail).

The success of the polio eradication program so far has made it clear that if vaccines can be deployed, circulation of the virus can be curtailed. If immunization could proceed unfettered, I suspect the virus would be gone in five years. But can anyone predict whether it will be possible to curtail the violence in Pakistan, Afghanistan, and Nigeria that has limited polio vaccination efforts?

TWiV 403: It’s not easy being vaccine

The TWiV team takes on an experimental plant-based poliovirus vaccine, contradictory findings on the efficacy of Flumist, waning protection conferred by Zostavax, and a new adjuvanted subunit zoster vaccine.

You can find TWiV #403 at microbe.tv/twiv, or listen below.

Click arrow to play
Download TWiV 403 (70 MB .mp3, 96 min)
Subscribe (free): iTunesRSSemail

Become a patron of TWiV!

Whole plant cells producing viral capsid protein as a poliovirus vaccine candidate

poliovirusAlthough the use of the live, attenuated (Sabin) poliovirus vaccines has been instrumental in nearly eradicating the virus from the planet, the rare reversion to virulence of these strains has lead to the World Health Organization to recommend their replacement with inactivated poliovirus vaccine (IPV). Unfortunately IPV is also not without shortcomings, including high cost, failure to induce intestinal immunity, and the need to keep the vaccine at low temperatures. An experimental poliovirus vaccine produced in plants could overcome these problems.

A new vaccine candidate was made by producing the poliovirus capsid protein VP1 in the chloroplast of tobacco plants (nuclear-directed antigen synthesis is often inefficient). VP1 was fused to the cholera toxin B (CTB) subunit which allows good transmucosal delivery of the protein. Leaves were freeze dried, ground to a powder, mixed with saline and fed to mice after subcutaneous inoculation with IPV. The results show that boosting with the plant-derived VP1-CTB protein lead to higher antibody neutralizing titers (against all three poliovirus serotypes) both in the blood and in fecal extracts, compared with mice inoculated with IPV alone.

The VP1-CTP protein within lyophilized plant cells was stable for 8 months at ambient temperatures. If immunogenicity is maintained under these conditions, it would eliminate the need for a cold chain to maintain vaccine potency, an important achievement.

The authors propose that plant-produced VP1-CTP protein could substitute for IPV once the use of OPV is discontinued. Whether this suggestion is true depends on confirmation, by clinical trial, of these findings in humans. Furthermore, oral administration of VP1-CTP plant cells alone produces no serum neutralizing antibodies, and whether VP1-CTP boosts immunity in OPV recipients remains to be determined. Because VP1-CTP does not provide protection in children who have never received IPV or OPV, it cannot be used if poliovirus circulation continues indefinitely in the face of a growing cohort that has not been immunized with IPV or OPV. Nevertheless the technology has promise for the development of other vaccines that are inexpensive and do not need low temperature storage.

From trivalent to bivalent oral poliovirus vaccine

Antibodies bound to poliovirusFor the first time since April of 1955, recipients of poliovirus vaccine will no longer receive all three serotypes. This past Sunday the World Health Organization orchestrated a synchronized switch from trivalent to bivalent oral poliovirus vaccine (OPV) in 150 countries.

The reason for the switch is clear: type 2 poliovirus was declared eradicated last year, and the only remaining cases are cause by vaccine-derived type 2 polioviruses. After oral administration of poliovirus vaccine, the virus replicates in the intestine, conferring immunity to subsequent infection. In all recipients of the vaccine the viruses lose the mutations that make them safe for humans. Consequently a small number of recipients, and their contacts, contract poliomyelitis from the vaccine.

To prevent further cases of poliomyelitis caused by circulating vaccine-derived polioviruses, WHO planned a synchronized, global switch from trivalent OPV to bivalent OPV on 17 April 2016. By July of 2016 all remaining stocks of the Sabin type 2 poliovirus strains, which are used to produce OPV, will also be destroyed.

My concern with this strategy is that type 2 vaccine-derived polioviruses continue to circulate. Whether they will continue to do so long enough to cause an outbreak of paralytic disease in the cohort of new infants that do not receive type 2 vaccine is a mattern of conjecture. In case there is an outbreak, monovalent type 2 oral poliovirus vaccine is being stockpiled by WHO. Of course, re-introduction of this vaccine will be accompanied by more circulating vaccine-derived poliovirus in the environment, and vaccine-associated disease, the very event WHO is trying to end with the trivalent to bivalent switch.

Type 3 poliovirus has not been isolated since 2012. Only type 1 poliovirus still causes outbreaks in two countries: Pakistan and Afghanistan. The inability to vaccinate in those countries, due to conflict, is delaying eradication. The recent killing of seven police officers who were protecting polio vaccinators by the Pakistani Taliban is an example of this difficulty.

Developing a great vaccine is not the only requirement for preventing infectious disease: you also have to be able to deploy it.

Image: Antibodies bound to poliovirus by Jason Roberts.

TWiV 374: Discordance in B

TWiVOn episode #374 of the science show This Week in Virology, the TWiVniks consider the role of a cell enzyme that removes a protein linked to the 5′-end of the picornavirus genome, and the connection between malaria, Epstein-Barr virus, and endemic Burkitt’s lymphoma.

You can find TWiV #374 at microbe.tv/twiv.

TWiV 373: The distinguished virology career of Julius S. Youngner

On episode #373 of the science show This Week in Virology, Vincent speaks with Julius about his long career in virology, including his crucial work as part of the team at the University of Pittsburgh that developed the Salk inactivated poliovirus vaccine.

You can find TWiV #373 at microbe.tv/twiv. Or you can watch the video below.