Zinc inhibits rhinovirus replication

hrv1a_zincThe title of this post should not come as a surprise to readers of virology blog – it was shown in 1974 that zinc could interfere with replication of rhinoviruses (see “Zinc and the common cold“). I am referring to the result of my first experiment to study the mechanism of zinc inhibition – something I promised I would document on these pages.

I am interested in understanding how zinc inhibits rhinovirus replication. Answering this question could lead to new ways to prevent common colds caused by these viruses. The first step was to reproduce the effect of zinc in my laboratory with my stocks of rhinovirus. I selected rhinovirus type 1a for my initial experiments because we’ve worked with this serotype in the past: we know the genome sequence and how the virus behaves in a mouse model. I started by doing a plaque assay with and without zinc in the medium. I prepared tenfold dilutions of virus and inoculated separate monolayers of HeLa cells with 2000, 200, and 20 plaque forming units. After allowing the virus to attach to cells for 45 minutes, I added an agar overlay to the cells with or without zinc chloride (ZnCl2). I selected 0.1 millimolar ZnCl2 because that is the concentration which had been reported to effectively inhibit plaque formation by rhinovirus type 1a. The plates were incubated for four days at 32°C and then stained. The results are shown in the photo. Plaque assays are typically done in duplicate but for simplicity only one plate of each dilution is shown.

Twenty plaques were observed on the highest dilution of virus plated in the absence of ZnCl2. Ten-fold lower dilutions produced increases in plaque number, although the plaques are too numerous to count. In the presence of ZnCl2, no plaques were observed on cells inoculated with 20 PFU. A few plaques are observed on the intermediate dilution and many more on the lowest dilution. Plaques observed in the presence of ZnCl2 are smaller than those observed in the absence of the metal.

What do you think is going on here, and what should I do next? If you’ve kept up with virology 101 you have all the tools to answer these questions. Please post your thoughts in the comments section.

KORANT, B., KAUER, J., & BUTTERWORTH, B. (1974). Zinc ions inhibit replication of rhinoviruses Nature, 248 (5449), 588-590 DOI: 10.1038/248588a0

How many viruses are needed to form a plaque?

The plaque assay is an essential tool for determining virus titers. The concept is simple: virus infection is restricted to neighboring cells by a semisolid overlay. By counting the number of plaques, the virus titer can be calculated in PFU per ml. A key question is: how many viruses are needed to form a single plaque?

For most animal viruses, one infectious particle is sufficient to initiate infection. This conclusion can be reached by studying the relationship between the number of infectious virus particles and the plaque count. A linear relationship means that one infectious particle can form a plaque. In this case the virus is said to infect cells with one-hit kinetics. This concept is illustrated below. In this figure, the number of plaques produced by a virus with one-hit kinetics or two-hit kinetics is plotted versus the relative concentration of the virus.

dose-response-plaque-assay

There are some examples of viruses with two-hit kinetics: in other words, two different types of viral particles must infect a cell to initiate the infectious cycle. Examples include the genomes of some (+) strand RNA viruses of plants, which consists of two RNA molecules that are packaged in different particles. The dose-response curve of such viruses is parabolic rather than linear.

When a single virus particle can form a plaque, the viral progeny within the plaque are clones. Virus stocks prepared from a single plaque are called plaque purified virus stocks. To prepare such virus stocks, the tip of a small pipette is inserted into the agar overlay above the plaque. The plug of agar is removed and placed in buffer. The viruses within the agar plug move into the buffer, which can then be used to infect cultured cells. To ensure purity, this process is usually repeated at least one more time. Plaque purification is used extensively in virology to establish clonal virus stocks. The ability to prepare clonal virus stocks was an essential development that permitted genetic analysis of viruses.

Detecting viruses: the plaque assay

One of the most important procedures in virology is measuring the virus titer – the concentration of viruses in a sample. A widely used approach for determining the quantity of infectious virus is the plaque assay. This technique was first developed to calculate the titers of bacteriophage stocks. Renato Dulbecco modified this procedure in 1952 for use in animal virology, and it has since been used for reliable determination of the titers of many different viruses.

polio-plaquesTo perform a plaque assay, 10-fold dilutions of a virus stock are prepared, and 0.1 ml aliquots are inoculated onto susceptible cell monolayers. After an incubation period, to allow virus to attach to cells, the monolayers are covered with a nutrient medium containing a substance, usually agar, that causes the formation of a gel. When the plates are incubated, the original infected cells release viral progeny. The spread of the new viruses is restricted to neighboring cells by the gel. Consequently, each infectious particle produces a circular zone of infected cells called a plaque. Eventually the plaque becomes large enough to be visible to the naked eye. Dyes that stain living cells are often used to enhance the contrast between the living cells and the plaques. Only viruses that cause visible damage of cells can be assayed in this way. An example of plaques formed by poliovirus on a monolayer of HeLa cells is shown at left. In this image, the cells have been stained with crystal violet, and the plaques are readily visible where the cells have been destroyed by viral infection.

The titer of a virus stock can be calculated in plaque-forming units (PFU) per milliliter. To determine the virus titer, the plaques are counted. To minimize error, only plates containing between 10 and 100 plaques are counted, depending on the size of the cell culture plate that is used. Statistical principles dictate that when 100 plaques are counted, the sample titer will vary by plus or minus 10%. Each dilution is plated in duplicate to enhance accuracy. In the example shown below, there are 17 plaques on the plate made from the 10-6 dilution. The titer of the virus stock is therefore 1.7 x 108 PFU/ml.

plaque-assay

Next we’ll consider how the plaque assay can be used to prepare clonal virus stocks, a step that is essential for studying viral genetics.

Dulbecco, R., & Vogt, M. (1953). Some problems of animal virology as studied by the plaque technique. Cold Spring Harbor Symp. Quant. Biol., 18, 273-279