TWiV 275: Virocentricity with Eugene Koonin

On episode #275 of the science show This Week in Virology, Vincent and Rich meet up with Eugene Koonin to talk about the central role of viruses in the evolution of all life.

You can find TWiV #275 at

Pithovirus: Bigger than Pandoravirus with a smaller genome

PithovirusA new virus called Pithovirus sibericum has been isolated from 30,000 year old Siberian permafrost. It is the oldest DNA virus of eukaryotes ever isolated, showing that viruses can retain infectivity in nature for very long periods of time.

Pithovirus was isolated by inoculating cultures of the amoeba Acanthamoeba castellani with samples taken in the year 2000 from 30 meters below the surface of a late Pleistocene sediment in the Kolyma lowland region. This amoeba had been previously used to propagate other giant viruses, such as Mimivirus and Pandoravirus. Light microscopy of the cultures revealed the presence of ovoid particles which were subsequently shown by electron microscopy to resemble those of Pandoravirus. Pithovirus particles are flask-shaped and slightly larger than Pandoravirus – 1.5 microns long, 500 nm in diameter, encased by a 60 nm thick membrane. One end of the virus particle appears to be sealed with what the authors call a cork (photo). This feature, along with the shape of the virus particle,  inspired the authors to name the new isolate Pithovirus, from the Greek word pithos which refers to the amphora given to Pandora. The name therefore refers both to the morphology of the virus particle and its similarity to Pandoravirus.

Although the Pithovirus particle is larger than Pandoravirus, the viral genome – which is a double-stranded molecule of DNA – is smaller, a ‘mere 610,033 base pairs’, to use the authors’ words (the Pandoravirus genome is 2.8 million base pairs in length). There are other viruses with genomes of this size packed into much smaller particles – so why is the Pithovirus particle so large? Might it have recently lost a good deal of its genome and the particle size has not yet caught up? One theory of the origin of viruses is that they originated from cells and then lost genes on their way to becoming parasitic.

We now know of viruses from two different families that have similar morphology: an amphora-like shape, an apex, and a thick electron-dense tegument covered by a lipid membrane enclosing an internal compartment. This finding should not be surprising: similar viral architectures are known to span families. The icosahedral architecture for building a particle, for example, can be found in highly diverse viral families. The question is how many viruses are built with the pithovirus/pandoravirus structure. My guess would be many, and they could contain either DNA genomes. We just need to look for them, a process, as the authors say that ‘will remain a challenging and serendipitous process’.

Despite the physical similarity with Pandoravirus, the Pithovirus genome sequence reveals that it is barely related to that virus, but more closely resembles members of the Marseillviridae, Megaviridae, and Iridoviridae. These families all contain large icosahedral viruses with DNA genomes.  Only 32% of the 467 predicted Pithovirus proteins have homologs in protein databases (this number was 61% for Mimivirus and 16% for Pandoravirus). In contrast to other giant DNA viruses, the genome of Pithovirus does not encode any component of the protein synthesis machinery. However the viral genome does encode the complete machinery needed to produce mRNAs. These proteins are present in the purified Pithovirus particle. Pithovirus therefore undergoes its entire replication cycle in the cytoplasm, much like other large DNA viruses such as poxviruses.

Pithovirus is an amazing virus that hints about the yet undiscovered viral diversity that awaits discovery. Its preservation in a permafrost layer suggests that these regions might harbor a vast array of infectious organisms that could be released as these regions thaw or are subjected to exploration for mineral and oil recovery. A detailed analysis of the microbes present in these regions is clearly needed, both by the culture technique used in this paper and by metagenomic analysis, to assess whether any constitute a threat to animals.

TWiV 265: This year in virology

On episode #265 of the science show This Week in Virology, the TWiV team reviews ten compelling virology stories from 2013.

You can find TWiV #265 at

TWiV 261: Giants among viruses

On episode #261 of the science show This Week in Virology, Vincent meets up with Chantal and Jean-Michel at the first International Symposium on Giant Virus Biology in Tegernsee, Germany, to discuss their work on Mimivirus, Megavirus, and Pandoravirus.

You can find TWiV #261 at

TWiV 246: Pandora, pandemics, and privacy

On episode #246 of the science show This Week in Virology, Vincent, Alan, Rich, and Kathy discuss the huge Pandoravirus, virologists planning H7N9 gain of function experiments, and limited access to the HeLa cell genome sequence.

You can find TWiV #246 at

We recorded this episode of TWiV as a Google hangout on air. Consequently the audio is not the same quality as you might be used to. But the tradeoff is that you can see each of us on video.


Pandoravirus, bigger and unlike anything seen before

pandoravirusThe discovery of the giant Mimivirus and Megavirus amazed virologists (and also many others). Their virions (750 nanometers) and DNA genomes (1,259,000 base pairs) were the biggest ever discovered, shattering the notions that viruses could not be seen with a light microscope, and that viral genomes were smaller than bacterial genomes. Now two even bigger viruses have been discovered, which are physically and genetically unlike any previously known viruses. They have been called Pandoraviruses.

Both new viruses were isolated by culturing environmental samples in the amoeba Acanthamoeba castellaniPandoravirus salinus was isolated from shallow marine sediment in a river at the coast of central Chile, and Pandoravirus dulcis was obtained from mud at the bottom of a freshwater pond near Melbourne, Australia. The P. salinus genome is at least 2.77 megabases in length (there is some uncertainty in the actual length due to the presence of repeated sequences at the ends of the DNA), while the P. dulcis genome is 2.47 megabases in length. The smaller P. dulcis genome is a subset of the P. salinus genome.

These new genomes are twice as large as those of previously described viruses, and bigger than the genomes of intracellular bacteria such as Tremblaya (138,927 base pairs) and Rickettsia (1,111,523 bp), some free living bacteria, and many free living Archaea.

While the huge sizes of the Pandoravirus virion and genomes are amazing, I find three other features of these viruses even more remarkable. The first is their atypical replication cycle. The virions are taken into amoebae by phagocytic vacuoles, and upon fusing with the vacuole membrane, the virion contents are released into the cytoplasm via a pore on the virion apex. Within 2-4 hours the cell nucleus is reorganized, and by 8-10 hours new particles appear where the nucleus once was. Pandoravirus DNA and virions are synthesized and assembled simultaneously, in contrast to eukaryotic DNA viruses and phages which fill pre-formed capsids with DNA. Virions are released by 10-15 hours as the cells lyse.

A second amazing feature is that most of the P. salinus open reading frames encode brand-new proteins. Of the 2,556 putative protein coding sequences in the P. salinus genome, 93% have no recognizable counterparts among known proteins. Some of the genes found in large DNA viruses are present, such as those encoding DNA polymerase and DNA-dependent RNA polymerase, and several amino acyl-tRNA synthetases, like members of the Megaviridae. Curiously, many of the Pandoravirus coding regions contain intervening sequences, which must be removed by RNA splicing. This process is known to occur only in the cell nucleus, suggesting that some Pandoravirus transcription occurs in that organelle. The lack of gene homology leads to authors to conclude that ‘no microorganism closely related to P. salinus has ever been sequenced’.

I am also impressed by what the authors describe as the ‘alien morphological features’ of the virions. The oval-shaped particles are 1 micron in length and 0.5 microns in diameter, easily visible by light microscopy. They are wrapped in a three-layered envelope with a pore at one end of the particle, and resemble nothing that has ever been seen before (see photograph).

How much bigger can viruses get? I don’t know the answer but I would guess even bigger than Pandoraviruses. The membranous Pandoravirus particle could easily accommodate even larger genomes. How big can a virus get and still be a virus? The answer to that question is easy: it is a virus as long as it requires a cell for replication.

These remarkable findings further emphasize the need for scientists to pursue their curiosity, and not only work on problems of obvious medical relevance. As the authors write,

This work is a reminder that our census of the microbial diversity is far from comprehensive and that some important clues about the fundamental nature of the relationship between the viral and the cellular world might still lie within unexplored environments.

Continuing their playful naming of giant viruses, the authors note that the name Pandoravirus reflects their ‘lack of similarity with previously described microorganisms and the surprises expected from their future study’.