TWiV 282: Tamiflu and tenure too

On episode #282 of the science show This Week in Virology, the TWiV team reviews a meta-analysis of clinical trial reports on using Tamiflu for influenza, and suggestions on how to rescue US biomedical research from its systemic flaws.

You can find TWiV #282 at www.microbe.tv/twiv.

Virology question of the week: why a segmented viral genome?

influenza-reassortmentThis week’s virology question comes from Eric, who writes:

I’m working on an MPH and in one of my classes we are currently studying the influenza virus. I’d forgotten that the genome is in 8 separate parts. Curious, I’ve been searching but can’t find any information as to why that is?

What evolutionary advantage is conferred by having a segmented genome?

Terrific question! Here is my reply:

It’s always hard to have answers to ‘why’ questions such as yours. We answer these questions from a human-centric view of what viruses ‘need’. We might not be right. But I’d guess there are at least two important advantages of having a segmented RNA genome.

Mutation is an important source of RNA virus diversity that is made possible by the error-prone nature of RNA synthesis. Viruses with segmented genome have another mechanism for generating diversity: reassortment (illustrated).

An example of the evolutionary importance of reassortment is the exchange of RNA segments between mammalian and avian influenza viruses that give rise to pandemic influenza. The 2009 H1N1 pandemic strain is a reassortant of avian, human, and swine influenza viruses.

Having a segmented genome is another way to get around the limitation that eukaryotic mRNAs can only encode one protein. Viruses with segmented RNA genomes can produce at least one protein per segment, sometimes more. There are other ways to overcome this limitation – for example by encoding a polyprotein (picornaviruses), or producing subgenomic RNAs (paramyxoviruses).

Other segmented viral genomes include those of reoviruses, arenaviruses, and bunyaviruses.

There are various ways to achieve genetic variation and gene expression, and viruses explore all aspects of this space.

Attenuated influenza vaccine enhances bacterial colonization of mice

attenuated influenzaInfection with influenza virus is known to increase susceptibility to bacterial infections of the respiratory tract. In a mouse model of influenza, increased bacterial colonization was also observed after administration of an infectious, attenuated influenza virus vaccine.

Primary influenza virus infection increases colonization of the human upper and lower respiratory tract with bacteria, including Streptococcus pneumoniae and Staphylococcus aureus. Such infections may lead to complications of influenza, including pneumonia, bacteria in the blood, sinusitis, and ear infections.

One of the vaccines available to prevent influenza is an infectious, attenuated preparation called Flumist. To determine if a vaccine such as Flumist increases susceptibility to bacterial infection, the authors created their own version of the vaccine (illustrated) in which the six RNA segments encoding internal proteins were derived from the A/Puerto Rico/8/34 (H1N1) strain (allowing replication in mice), and the HA and NA proteins were derived from A/Hong Kong/1/68 (H3N2). In addition, mutations were introduced into the viral genome that are important for the safe and protective properties of Flumist. For simplicity we’ll call this virus ‘live attenuated influenza virus’, or LAIV.

Mice were inoculated intranasally with a strain of S. pneumoniae known to colonize the nasopharynx, followed 7 days later by LAIV or wild type influenza virus. Inoculation with either virus similarly increased the bacterial levels in the nasopharynx, and extended the time of colonization from 35 to 57 days. In mice that were given only bacteria and no influenza virus, the inoculated bacteria were cleared beginning 4 days after administration. The more extensive and extended colonization of virus-infected mice was not associated with overt disease.

Administration of LAIV or wild type virus 7 days before bacteria also resulted in excess bacterial growth in mice. Similar results were obtained using S. aureus. Administration of S. pneumoniae up to 28 days after virus also lead to excess bacterial growth, despite clearance of the viruses around 7 days after vaccination.

All mice died when they were vaccinated with wild type influenza virus followed 7 days later by a sublethal dose of a highly invasive strain of S. pneumoniae. In contrast, pretreatment with LAIV lead to no disease or death of any mice.

It is not known if these findings in a mouse model directly apply to humans. However, because Flumist reduces influenza virus replication, it is associated with a decrease in secondary bacterial infections. It is possible that, after administration of LAIV to humans, there is an increase in bacterial colonization of the respiratory tract. Upper respiratory tract symptoms are a known adverse effect of LAIV, and it is possible that these might be related to increased bacterial loads. It is important to emphasize that use of LAIV is not associated with severe upper or lower tract disease.

These findings are important because they show that a mouse model could be used to understand why influenza virus infection leads to increased bacterial colonization of the respiratory tract. It will be important to determine the precise mechanisms by which influenza virus infection, and the associated virus and immune-mediated alteration to the respiratory tract, allows enhanced bacterial colonization. At least one mechanism, which we discussed on episode #62 of This Week in Microbiology, involves the disruption of biofilms, allowing bacteria to enter the bloodstream.

The alphanumeric soup known as influenza

Robert Herriman, co-founder of The Global Dispatch, recently started a radio show called Outbreak News This Week. Robert calls the show “Your source for all the news about worms and germs”. He covers the latest news and information about infectious diseases and often includes interviews with expert guests. The show can be heard live Saturday mornings at 7:30 am EST on on The Tan Talk Radio Network: 1340 AM WTAN Clearwater, 1350 AM WDCF Dade City and 1400 AM WZHR Zephyrhills. You can also listen online.

I have been a frequent guest on Robert’s Outbreak News This Week, most recently this past Saturday, when we had a broad-ranging conversation about influenza virus. We also managed to squeeze in a few words about my favorite virus, poliovirus, and India’s success in remaining polio-free for three years. Listen below.

 

TWiV 267: Snow in the headlights

On episode #267 of the science show This Week in Virology, Vincent, Alan, Rich and Kathy review a protease essential for influenza pathogenesis in mice, and directionality of rhinovirus RNA exit from the capsid.

You can find TWiV #267 at www.microbe.tv/twiv.

Cutting through mucus with the influenza virus neuraminidase

influenza virusNeuraminidase is one of three different viral proteins embedded in the lipid membrane of influenza virus (NA is blue in the illustration at left). This enzyme has a clear and proven role in virus release from cells. NA is also believed to be important during virus entry, by degrading the mucus barrier of the respiratory tract and allowing virus to reach cells. This role is supported by the finding that treatment of mucus-covered human airway epithelial cells with the NA inhibitor Tamiflu substantially suppresses the initiation of infection.  Further evidence comes from the recent finding that influenza virus binds to sialic acids in mucus and that NA cleaves these sugars to allow infection.

The mucus layer of the respiratory tract has a defensive role because it contains soluble glycoproteins that are rich in sialic acids, which are cell receptors for some viruses. When influenza virions enter the respiratory tract, they are thought to be trapped in mucus where they bind sialic acids, preventing infection of the underlying cells. The role of NA in penetration of the mucus layer was studied in frozen sections of human tracheal and bronchial tissues, in which the mucus layer is preserved. Influenza A virions bind to this mucus layer; the interaction is blocked when the tissues are first treated with a bacterial neuramindase, which removes sialic acids from glycoproteins. These observations indicate that the mucus layer of human airway epithelial cells contain sialic acid-containing decoys that bind influenza A viruses.

Human salivary mucins, which approximate the mucus of the human respiratory tract, can protect cultured cells from influenza virus infection. The protective effect can be achieved by simply adding the mucins to cells. The inhibitory effect is dependent on the sialic acid content of the mucins: fewer cells are infected when higher concentrations are used. In contrast, porcine salivary mucins do not substantially reduce influenza virus infection. The type of sialic acids and the virus strain also determine the extent of protection.

To determine the role of the viral NA in mucin-mediated inhibition, Tamiflu was mixed with virus before infection of mucus-coated cells. The presence of Tamiflu increased the inhibition of infection caused by mucins, indicating that the sialic acid-cleaving (sialidase) activity of NA is needed to overcome inhibition by human salivary mucins. When influenza virions are incubated with human salivary mucins linked to beads, sialic acids are cleaved from mucins, and this enzymatic activity is inhibited by Tamiflu. Human salivary mucins inhibit NA by binding to the active site of the enzyme.

These studies establish a clear role for the influenza viral NA in bypassing the defenses of the mucosal barrier. An important message is that not all strains of influenza virus are equally inhibited by mucus; presumably this property is one of many that determines viral virulence. The balance between how tightly the viral HA binds to sialic acids, and how well the NA cleaves them, is probably one predictor of how well we our protected by our mucus.

 

TWiV 263: Game of clones

On episode #263 of the science show This Week in Virology, Ben tenOever joins the TWiV team to reveal the winner of his contest in which influenza viruses carrying different interferon-stimulated genes vie against one another in mice.

You can find TWiV #263 at www.microbe.tv/twiv.

Changing influenza virus neuraminidase into a receptor binding protein

neuraminidaseThe hemagglutinin (HA) and neuraminidase (NA) glycoproteins of the influenza virus particle serve distinct functions during infection. The HA binds sialic acid-containing cellular receptors and mediates fusion of the viral and cell membranes, while the NA removes sialic acids from glycoproteins. Apparently this division of labor is not absolute: influenza viruses have been identified with NA molecules that serve as receptor binding proteins.

An influenza virus was created that could not bind sialic acid by introducing multiple mutations into the HA gene. This mutant virus was not expected to be infectious, but nevertheless did propagate to moderate titers in cell culture. A single amino acid change was identified in the NA protein of this virus: G147R, which is just above the active site of the enzyme (illustrated; active site marked with green spheres). Passage of the virus in cell culture produced a virus that multiplied to higher titers; improved growth was caused by a K62E change in the HA stalk. The results of site-directed mutagenesis showed that the G147R change allowed the NA protein to serve the receptor binding function normally provided by HA. It is not clear how the HA change leads to improved growth of the G147 virus.

Although the G147R NA can serve as receptor binding protein, the HA is still required for fusion: abolishing this activity by mutation or by treatment with a fusion-blocking antibody did not allow virus growth.

The influenza NA protein is an enzyme (sialidase) that cleaves sialic acids from cellular and viral proteins. The G147R NA is active as a sialidase, and this activity can be blocked by the antiviral compound oseltamivir, which is an NA inhibitor. Treatment of G147R-containing virus with oseltamivir also blocked virus binding to cells. Virus-like particles that contain G147R NA but not HA can attach to sialic acid-containing red blood cells. This attachment can be reversed by oseltamivir. After binding to red blood cells, these virus-like particles slowly fall off, a consequence of NA cleaving sialic acid receptors. These observations indicate that the G147R NA binds to sialic acids at the active site of the enzyme, and cleaves the same receptor that it binds.

Treatment of cells with a bacterial sialidase that removes a broad range of sialic acids only partially inhibits G147R NA-mediated binding to cells. In contrast, growth of wild type influenza virus is completely blocked by this treatment. Therefore the receptor recognized by G147R NA is not the same as that bound by wild type virus.

Changing the influenza virus NA to a receptor binding protein is not simply a laboratory curiosity: the G147R NA change was found in 31 of 19,528 NA protein sequences in the Influenza Virus Resource. They occur in seasonal H1N1 viruses that circulated before 2009, in the 2009 swine-origin pandemic H1N1 virus, and in avian H5N1 viruses. The presence of this change in phylogenetic clusters of seasonal H1N1 and chicken H5N1 sequences suggests that they are also found in circulating viruses, and are not simply sequence errors or the product of passage in the laboratory.

These observations emphasize the remarkable flexibility of the influenza viral glycoproteins in their ability to switch receptor binding function from HA to NA. They might also have implications for vaccines, whose effectiveness are thought to depend largely on the induction of antibodies that block the function of HA protein. The work underscores the importance of serendipity in science: the HA receptor binding mutant virus was originally produced as a negative control for a different experiment.

The neuraminidase of influenza virus

influenza virusThe influenza virus particle is made up of the viral RNA genome wrapped in a lipid membrane (illustrated). The membrane, or envelope, contains three different kinds of viral proteins. The hemagglutinin molecule (HA, blue) attaches to cell receptors and initiates the process of virus entry into cells. I have written about the HA and its function during infection (article one and two) but not about the neuraminidase (NA, red) or M2 (purple) proteins. Let’s first tackle NA.

An important function of the NA protein is to remove sialic acid from glycoproteins. Sialic acid is present on many cell surface proteins as well as on the viral glycoproteins; it is the cell receptor to which influenza virus attaches via the HA protein. The sialic acids on the HA and NA are removed as the proteins move to the cell surface through the secretory pathway. Newly released virus particles can still potentially aggregate by binding of an HA to sialic acid present on the cell surface. Years ago Peter Palese showed that influenza virus forms aggregates at the cell surface when the viral neuraminidase is inactivated. The NA is therefore an enzyme that is essential for release of progeny virus particles from the surface of an infected cell.

The NA protein also functions during entry of virus into the respiratory tract. The epithelial cells of the respiratory tract are bathed in mucus, a complex protective coating that contains many sialic acid-containing glycoproteins. When influenza virions enter the respiratory tract, they are trapped in mucus where they bind sialic acids. This interaction would prevent the viruses from binding to a susceptible cell were it not for the action of the NA protein which cleaves sialic acids from glycoproteins. When the virus particle encounters a cell, it binds the sialic acid-containing receptor and is rapidly taken into the cell before the NA protein can cleave the carbohydrate from the cell surface.

The essential nature of the NA for virus production has been exploited to develop new drugs designed to inhibit viral release. Both Tamiflu (Oseltamivir) and Relenza (Zanamivir) are structural mimics of sialic acid that bind tightly in the active site of the NA enzyme. When bound to drug, the NA cannot remove sialic acids from the cell surface, and consequently newly synthesized virus remains immobilized. The result is an inhibition of virus infection because virions cannot spread from one cell to another.

This article is part of Influenza 101, a series of posts about influenza virus biology and pathogenesis.

TWiV 257: Caveat mTOR

On episode #257 of the science show This Week in Virology, the TWiV team consider how the kinase mTOR modulates the antibody response to provide broad protection against influenza virus, and explore the problems with scientific research.

You can find TWiV #257 at www.microbe.tv/twiv.