Changing influenza virus neuraminidase into a receptor binding protein

neuraminidaseThe hemagglutinin (HA) and neuraminidase (NA) glycoproteins of the influenza virus particle serve distinct functions during infection. The HA binds sialic acid-containing cellular receptors and mediates fusion of the viral and cell membranes, while the NA removes sialic acids from glycoproteins. Apparently this division of labor is not absolute: influenza viruses have been identified with NA molecules that serve as receptor binding proteins.

An influenza virus was created that could not bind sialic acid by introducing multiple mutations into the HA gene. This mutant virus was not expected to be infectious, but nevertheless did propagate to moderate titers in cell culture. A single amino acid change was identified in the NA protein of this virus: G147R, which is just above the active site of the enzyme (illustrated; active site marked with green spheres). Passage of the virus in cell culture produced a virus that multiplied to higher titers; improved growth was caused by a K62E change in the HA stalk. The results of site-directed mutagenesis showed that the G147R change allowed the NA protein to serve the receptor binding function normally provided by HA. It is not clear how the HA change leads to improved growth of the G147 virus.

Although the G147R NA can serve as receptor binding protein, the HA is still required for fusion: abolishing this activity by mutation or by treatment with a fusion-blocking antibody did not allow virus growth.

The influenza NA protein is an enzyme (sialidase) that cleaves sialic acids from cellular and viral proteins. The G147R NA is active as a sialidase, and this activity can be blocked by the antiviral compound oseltamivir, which is an NA inhibitor. Treatment of G147R-containing virus with oseltamivir also blocked virus binding to cells. Virus-like particles that contain G147R NA but not HA can attach to sialic acid-containing red blood cells. This attachment can be reversed by oseltamivir. After binding to red blood cells, these virus-like particles slowly fall off, a consequence of NA cleaving sialic acid receptors. These observations indicate that the G147R NA binds to sialic acids at the active site of the enzyme, and cleaves the same receptor that it binds.

Treatment of cells with a bacterial sialidase that removes a broad range of sialic acids only partially inhibits G147R NA-mediated binding to cells. In contrast, growth of wild type influenza virus is completely blocked by this treatment. Therefore the receptor recognized by G147R NA is not the same as that bound by wild type virus.

Changing the influenza virus NA to a receptor binding protein is not simply a laboratory curiosity: the G147R NA change was found in 31 of 19,528 NA protein sequences in the Influenza Virus Resource. They occur in seasonal H1N1 viruses that circulated before 2009, in the 2009 swine-origin pandemic H1N1 virus, and in avian H5N1 viruses. The presence of this change in phylogenetic clusters of seasonal H1N1 and chicken H5N1 sequences suggests that they are also found in circulating viruses, and are not simply sequence errors or the product of passage in the laboratory.

These observations emphasize the remarkable flexibility of the influenza viral glycoproteins in their ability to switch receptor binding function from HA to NA. They might also have implications for vaccines, whose effectiveness are thought to depend largely on the induction of antibodies that block the function of HA protein. The work underscores the importance of serendipity in science: the HA receptor binding mutant virus was originally produced as a negative control for a different experiment.

TWiV 236: Flu gets the VIP treatment

On epside #236 of the science show This Week in Virology, Vincent, Alan and Kathy review novel approaches to preventing influenza virus infection.

You can find TWiV #236 at

First human infections with avian influenza H7N9 virus

comingled birdsFourteen people in China have been infected with avian influenza H7N9 virus, leading to five deaths. This avian influenza virus has never been isolated from humans.

Influenza A viruses with the H7 hemagglutinin protein circulate among birds, and some, such as H7N2, H7N3, and H7N7, have been previously found to infect humans. It is not known how the individuals in China acquired the H7N9 virus. Some of the infections have occurred in Shanghai, where a similar virus was found in pigeon samples collected at a marketplace in that city. It is not clear what types of pigeon samples tested positive for the virus, nor is it known whether the virus spread from poultry to pigeons or vice versa. In response the city has begun mass slaughter of poultry to stem further spread of the virus.

Influenza H7N9 virus is typically a low-pathogenicity virus, which means that infection of chickens causes mild respiratory disease, depression, and decrease in egg production. The virus does not have a basic peptide between HA1 and HA2. The presence of a basic peptide in this location allows the viral hemagglutinin glycoprotein to be cleaved by proteases that are present in most cells, enabling the virus to replicate in many organs. Without this basic peptide, the HA is cleaved only by proteases present in the respiratory tract, limiting replication to that site.

According to Brian Kimble on Google+, the nucleotide sequence reveals that the H7N9 human isolate is a reassortant* with 6 RNA segments encoding the internal proteins PB1, PB2, PA, NP, M, and NS derived from H9N2 virus, and the HA and NA from H7N9 virus. The significance of this observation is not clear, because I do not know if H7N9 viruses isolated from birds are also reassortants. One possibility is that reassortment produced a virus that can infect humans. It is known that reassortants of H9N2 viruses with the 2009 pandemic H1N1 strain can transmit via aerosols in ferrets.

An important question is whether this H7N9 virus isolated from humans has pandemic potential. So far there is no evidence for human to human transmission of the virus. There is no vaccine for this subtype of influenza virus, but the virus is susceptible to neuraminidase inhibitors oseltamivir and zanamivir. WHO has released the following statement:

Any animal influenza virus that develops the ability to infect people is a theoretical risk to cause a pandemic. However, whether the influenza A(H7N9) virus could actually cause a pandemic is unknown. Other animal influenza viruses that have been found to occasionally infect people have not gone on to cause a pandemic.

*Because the influenza virus genome occurs as 8 segments of RNA, when multiple viruses infect a single cell, new viruses can be produced with combinations of the parental segments, a process known as reassortment.

Update: Peter Palese notes that the human H7N9 isolates do not have a serine in position 61 (as does the 1918 virus). This change is a human virulence marker for some animal influenza viruses. Brian Kimble notes that the H7N9 isolates possess a L226 equivalent in the HA, which confers human-like receptor binding in other viruses. Human influenza viruses prefer to bind to alpha-2,6 sialic acid receptors, while avian strains bind alpha-2,3 sialic acids. If the human H7N9 viruses can bind alpha-2,6 sialic acid receptors then they are adapted to infect the human upper respiratory tract.

TWiV 173: Going to bat for flu research

On episode #173 of the podcast This Week in Virology, the TWiVites discuss seroevidence for human infection with avian influenza H5N1, and the discovery of a new influenza virus in Guatemalan bats.

You can find TWiV #173 at

Universal influenza vaccines

The need to re-formulate the influenza virus vaccine in response to viral antigenic drift and shift makes for complex logistics of vaccine production and administration. Surveillance programs must be conducted each year to identify strains that are likely to predominate and cause disease. Wouldn’t it be simpler if a single vaccine could be developed that would confer protection against a broad range of viral strains? Results from the past year suggest that such a vaccine might be closer than previously thought.

The influenza viral HA protein consists of a globular head atop a stem that is embedded in the virion membrane (figure). Most protective antibodies are directed against the head of the HA molecule. Rare antibodies that block infection with a broad range of influenza virus strains are directed toward the conserved stalk of the viral surface glycoprotein HA. This observation was taken a step further by showing that sequential immunization with different viral HAs, or with HA lacking the globular head, induce broadly neutralizing antibodies. Peter Palese discussed these approaches on TWiV #102.

In another approach, neutralizing antibodies have been induced by immunizing first with plasmid DNA, followed by a boost with recombinant adenovirus encoding the HA protein. Mice were immunized first with plasmid DNA encoding an H1 HA from the 2006-2007 influenza season, then boosted with a recombinant adenovirus encoding the same HA protein. Sera from immunized mice neutralized strains of H1N1 influenza virus dating to 1934, as well as H2N2 and H5N1 viruses. When inoculated with a 1934 H1N1 virus, immunized mice were protected from lethal disease. Immunization of ferrets with a similar regimen also protected these animals from lethal disease. Broadly neutralizing antibodies were elicited in nonhuman primates by this prime-boost regimen.

Both the plasmid DNA and the recombinant adenovirus encoded the full-length HA protein, with both the globular head and fibrous stem. However, the broadly neutralizing and protective antibodies were directed against the stem. Anti-HA stem antibodies were also identified in monkeys that had been immunized with the prime-boost combination.

Why doesn’t the seasonal influenza vaccine elicit broadly neutralizing antibodies? These vaccines induce antibodies that almost exclusively bind the variable head of the HA, not the conserved stem. The reason probably lies in how the vaccines are prepared: virions are inactivated by treatment with detergent and formaldehyde, a process that destroys the particle. Consequently, the vaccine contains mainly HA and NA and not other components that can help shape a more diverse antibody repertoire. In contrast, it is known that plasmid-based priming can stimulate B cells to produce a more diverse set of antibodies.

The strategy of priming with plasmid DNA followed by boosting with recombinant adenovirus will likely be evaluated in clinical trials for the ability to protect against natural infection with influenza virus. The possibility of a broadly protective influenza virus vaccine that would be taken perhaps every 10-20 years is rapidly becoming a reality.

Wang TT, Tan GS, Hai R, Pica N, Petersen E, Moran TM, & Palese P (2010). Broadly protective monoclonal antibodies against H3 influenza viruses following sequential immunization with different hemagglutinins. PLoS pathogens, 6 (2) PMID: 20195520

Wei CJ, Boyington JC, McTamney PM, Kong WP, Pearce MB, Xu L, Andersen H, Rao S, Tumpey TM, Yang ZY, & Nabel GJ (2010). Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science (New York, N.Y.), 329 (5995), 1060-4 PMID: 20647428

Virology pop quiz

BaculovirusThis week’s pop quiz involves analysis of an AFP news article entitled “US company makes first batch of swine flu vaccine“. The article reports that Protein Sciences has been awarded a contract from the US Department of Health and Human Services to produce a vaccine by synthesizing the viral HA protein in insect cells. Here are two paragraphs from the article:

They warned that the virus could mutate during the southern hemisphere’s flu season before returning north in a more lethal form in autumn, in a pattern similar to that seen in the deadly 1918 flu pandemic, which claimed an estimated 20 to 50 million lives around the globe.

The CDC (Centers for Disease Control and Prevention) sent us a dead virus, which is perfectly safe, and then we extracted genetic information from that virus.

What is wrong with these statements? Post your answers in the comments section.

For extra credit, critique this statement from the same article:

Protein Sciences’ technology is also safer “because these caterpillars don’t have any association with man or other animals, so there’s no chance for their cells to learn how to propagate human viruses,” Adams told AFP.

Influenza HA cleavage is required for infectivity

The influenza virus hemagglutinin (HA) is the viral protein that attaches to cell receptors. The HA also plays an important role in the release of the viral RNA into the cell, by causing fusion of viral and cellular membranes. HA must be cleaved by cellular proteases to be active as a fusion protein.

The HA on the influenza virion is a trimer: it is made up of three copies of the HA polypeptide. The cleavage site for cell proteases on the HA protein is located near the viral membrane.


In the diagram, the globular head of the HA protein, which attaches to cell receptors, is at the top, and the viral membrane is at the bottom. For clarity, only one HA cleavage site is labeled. The uncleaved form of the protein is called HA0; after cleavage by a cellular enzyme, two proteins are produced, called HA1 (blue) and HA2 (red). The two subunits remain together at the surface of the virus particle. The new amino(N)-terminal end of HA2 that is produced by cleavage contains a sequence of hydrophobic amino acids called a fusion peptide. During entry of influenza virus into cells, the fusion peptide inserts into the endosomal membrane and causes fusion of the viral and cell membranes. Consequently, the influenza viral RNAs can enter the cytoplasm. The fusion process is described in a previous post.

If the HA protein is not cleaved to form HA1 and HA2, fusion cannot occur. Therefore influenza viruses with uncleaved HA are not infectious. Cleavage of the viral HA occurs after newly synthesized virions are released from cells. Influenza viruses replicate efficiently in eggs because of the presence of a protease in allantoic fluid that can cleave HA. However, replication of many influenza virus strains in cell cultures requires addition of the appropriate protease (often trypsin) to the medium.

In humans, influenza virus replication is restricted to the respiratory tract, because that is the only location where the protease that cleaves HA is produced. However, the HA protein of highly pathogenic H5 and H7 avian influenza virus strains can be cleaved by proteases that are produced in many different tissues. As a result, these viruses can replicate in many organs of the bird, including the spleen, liver, lungs, kidneys, and brain. This property may explain the ability of avian H5N1 influenza virus strains to replicate outside of the human respiratory tract.

Like the HA proteins of highly pathogenic H5 and H7 viruses, the HA of the 1918 influenza virus strain can also be cleaved by ubiquitous cellular proteases. Consequently, the virus can replicate in cell cultures in the absence of added trypsin.

The H5 and H7 HA proteins have multiple basic amino acid residues at the HA1-HA2 cleavage site which allows cleavage by widely expressed proteases. But the 1918 H1 HA does not have this feature. Nor does the 1918 N1 help recruit proteases that cleave the HA, a mechanism that allows the A/WSN/33 influenza virus strain to multiply in cells without trypsin. An understanding of how the 1918 H1 HA protein can be cleaved by ubiquitous proteases is essential for understanding the high pathogenicity of this strain.

Chaipan, C., Kobasa, D., Bertram, S., Glowacka, I., Steffen, I., Solomon Tsegaye, T., Takeda, M., Bugge, T., Kim, S., Park, Y., Marzi, A., & Pohlmann, S. (2009). Proteolytic Activation of the 1918 Influenza Virus Hemagglutinin Journal of Virology, 83 (7), 3200-3211 DOI: 10.1128/JVI.02205-08