TWiV 367: Two sides to a Coyne

On episode #367 of the science show This Week in Virology, two Coynes join the TWiV overlords to explain their three-dimensional cell culture model of polarized intestinal for studying enterovirus infection.

You can find TWiV #367 at

TWiV 331: Why is this outbreak different from all other outbreaks?

On episode #331 of the science show This Week in Virology, the TWiV team discusses the possible association of the respiratory pathogen enterovirus D68 with neurological disease.

You can find TWiV #331 at

TWiV 328: Lariat tricks in 3D

On episode #328 of the science show This Week in Virology, the TWiVocateurs discuss how the RNA polymerase of enteroviruses binds a component of the splicing machinery and inhibits mRNA processing.

You can find TWiV #328 at

Enterovirus D68 infections in North America


Enterovirus D68 by Jason Roberts

An outbreak of respiratory disease caused by enterovirus D68 began in August of this year with clusters of cases in Missouri and Illinois. Since then 691 infections have been confirmed in 46 states in the US.

The number of confirmed infections is likely to increase in the coming weeks, as CDC has developed a more rapid diagnostic test. Previously it was necessary to amplify the viral genome by polymerase chain reaction, followed by nucleotide sequencing to determine the identity of the agent. The new test utilizes real time, reverse transcription PCR which is specific for the EV-D68 strains that have been circulating this summer.

Since its discovery in California in 1962, EV-D68 has been rarely reported in the United States (there were 26 isolations from 1970-2005). Beginning in 2009 it was more frequently linked to respiratory disease outbreaks in North America, Europe, Asia, and Africa. It seems likely that the virus was always circulating, but we never specifically looked for it.

The current EV-D68 outbreak is the largest ever reported in North America. Enterovirus infections are not rare – there are millions every year in the US – but why EV-D68 has been so frequently isolated this year is unknown. One possibility is that the CDC, after the initial outbreak in August 2014, began looking specifically for the virus.

Sequence analysis of the EV-D68 viral genomes indicate that 3 different strains are involved in the US outbreak. These viruses are related to EV-D68 strains that have previously circulated in the US, Europe, and Asia. The sequences are available at GenBank as follows: US-IL-14/18952, US-KY-14/18951, US-MO-14/18950, US-MO-14/18949, US-MO-14/18948, US-MO-14/18947, and US-MO-14/18946.

Most of the illness caused by EV-D68 in the US has been respiratory disease, mainly in children. Five of the 691 confirmed EV-D68 cases were fatal, but whether the virus was responsible is not known.

There have also been some cases of polio-like illness in children in several states associated with EV-D68. In Colorado the virus was isolated from four of 10 children with partial paralysis and limb weakness. Previously there had been one report of an association of EV-D68 with central nervous system disease. In this case viral nucleic acids were detected in cerebrospinal fluid. EV-D68 probably does not replicate in the human intestinal tract because the virus is inactivated by low pH. If the virus does enter the central nervous system, it may do so after first replicating in the respiratory tract, and then entering the bloodstream.

There are no vaccines or antivirals to prevent or treat EV-D68 infection. Most infections will resolve without intervention save for assistance with breathing. As the fall ends in North America, so will infections with this seasonal virus.

The incubation period of a viral infection

Incubation periodThe time before the symptoms of a viral infection appear is called the incubation period. During this time, viral genomes are replicating and the host is responding, producing cytokines such as interferon that can have global effects, leading to the classical symptoms of an acute infection (e.g., fever, malaise, aches, pains, and nausea). These symptoms are called the prodrome, to distinguish them from those characteristic of infection (e.g. paralysis for poliovirus, hemorrhagic fever for Ebolaviruses, rash for measles virus).

Whether or not an infected person is contagious (i.e. is shedding virus) during the incubation period depends on the virus. For example, Ebola virus infected patients do not pass the virus on to others during the incubation period. This fact explains why Tom Frieden said there was ‘zero chance’ that the passenger from Liberia who was diagnosed with Ebola virus infection in Dallas would have infected others while on an airplane. He had no symptoms of infection because he was still in the incubation period of the disease.

In contrast to Ebolaviruses, poliovirus and norovirus are shed during the incubation period – in the feces, where they can infect others.

Remarkably, viral incubation periods can vary from 1 or 2 days to years (Table; click to magnify). Short incubation times usually indicate that actions at the primary site of infection produce the characteristic symptoms of the disease. Longer incubation times indicate that the host response, or the tissue damage required to reveal the symptoms of infection, take place away from the primary site of infection.

The table was taken from the third edition of Principles of Virology. Missing from the table (which will be corrected in the next edition) is the incubation period of Ebola virus, which is 2 to 21 days. I would also argue that the incubation period of HIV is not 1-10 years, but 2-4 weeks, the time until the prodromal symptoms occur. The characteristic symptom of HIV-1 infection, immunosuppression, occurs much later.

Acute flaccid paralysis of unknown etiology in California


Enterovirus D68 by Jason Roberts

In February 2014 I wrote about children in California who developed a poliomyelitis-like paralysis, also called acute flaccid paralysis or AFP. However, the cause of this paralysis was not known. The CDC has released its study of these cases and concludes “The etiology of AFP with anterior myelitis in the cases described in this report remains undetermined.”

A total of 23 cases of AFP* in California were reported to CDC during the period June 2012 through June 2014. These cases were from diverse geographic regions of the state. Specimens from 19 of the patients were available and tested for poliovirus, aroboviruses, herpesviruses, parechoviruses, adenoviruses, rabies virus, influenza virus, metapneumovirus, respiratory syncytial virus, parainfluenza viruses, Mycoplasma pneumoniae, Rickettsia, and amoebas. Rhinovirus was detected in one patient, and enterovirus D68 in two patients; all others were negative for potential etiologic agents.

All 23 patients with AFP also had anterior myelitis, inflammation of the grey matter of the spinal cord, which is characteristic of poliomyelitis. While the rate of AFP in California betweeen 1992-1998 was 1.4 cases per 100,000 children per year,  anterior myelitis was not described in any of 245 cases reviewed by CDC. However, poliovirus was ruled out as a cause in the 19 individuals who could be tested.

The cause of AFP is often difficult to determine because there infectious and non-infectious etiologies. Only 2 of the 19 clinical specimens met CDC guidelines for poliovirus detection (two stool specimens collected ≥24 hours apart and <14 days after symptom onset) and the others were likely taken too late to detect the presence of virus. The finding of enterovirus D68 in two of the samples is difficult to interpret, as the virus was detected in respiratory specimens and could have been a coincidental infection.

This investigation began with a request from a San Francisco area physician to the California State Department of Public Health to determine whether poliovirus was present in a 29 year old male with AFP and anterior myelitis. Subsequently this department posted alerts for AFP with anterior myelitis to  local health departments, and it is from the cases submitted that the 23 were drawn. Therefore the number of cases of AFP with anterior myelitis might be a consequence of this surveillance.

We are left with the unsatisfying conclusion that these 23 cases of AFP with anterior myelitis were either caused by an undetected infectious agent, or by something else.

*Defined by CDC as “at least one limb consistent with anterior myelitis, as indicated by neuroimaging of the spine or electrodiagnostic studies (e.g., nerve conduction studies and electromyography), and with no known alternative etiology”.

TWiV 305: Rhymes with shinola

On episode #305 of the science show This Week in Virology, Vincent, Alan, and Kathy continue their coverage of the Ebola virus outbreak in West Africa, with a discussion of case fatality ratio, reproductive index, a conspiracy theory, and spread of the virus to the United States.

You can find TWiV #305 at

An outbreak of enterovirus 68


EV-A71 by Jason Roberts

During the winter of 1962 in California, a new virus was isolated from the oropharynx of 4 children who had been hospitalized with respiratory disease that included pneumonia and bronchiolitis. On the basis of its physical, chemical, and biological properties, the virus was classified as an enterovirus in the picornavirus family. Subsequently named enterovirus D68, it has been rarely reported in the United States (there were 79 isolations from 2009-2013). Towards the end of August 2014, an outbreak of severe respiratory disease associated with EV-D68 emerged in Kansas and Illinois.

Hospitals in Kansas City, Missouri, and Chicago, Illinois reported to the CDC an increase in the number of patients hospitalized with severe respiratory illness. EV-D68 was subsequently identified by polymerase chain reaction and nucleotide sequencing in 19/22 and 11/14 nasopharyngeal specimens from Kansas City and Chicago, respectively. Median ages of the patients were 4 and 5 years in the two cities, and most were admitted to the pediatric intensive care units due to respiratory distress. Other states have reported increases in cases of severe respiratory illness, and these are being investigated at CDC to determine if they are also associated with EV-D68.

There is no vaccine to prevent EV-D68 infection, nor is antiviral therapy available to treat infected patients. Current treatment is supportive to assist breathing; in a healthy individual the infection will resolve within a week. In the current outbreak no fatalities have been reported.

EV-D68 has been previously associated with mild to severe respiratory illness and is known to cause clusters of infections. It is not clear why there has been a sudden increase in the number of cases in the US. According to Mark Pallansch, Director of the Division of Viral Diseases at CDC, “our ability to find and detect the virus has improved to the point where we may now be recognizing more frequently what has always occurred in the past. So a lot of these techniques are now being applied more routinely both at the CDC but also at state health departments.” (Source: NPR).

I am sure that the nucleotide sequence of the EV-D68 virus isolated from these patients will reveal differences with previous strains. However whether or not those changes have anything to do with the increased number of isolations in the US will be very difficult to determine, especially as there is no animal model for EV-D68 respiratory disease.

Although how EV-D68 is transmitted has not been well studied, the virus can be detected in respiratory secretions (saliva, nasal mucus, sputum) and is therefore likely to spread from person to person by coughing, sneezing, or touching contaminated surfaces. The virus has been isolated from some of the children in California with acute flaccid paralysis, and there is at least one report of its association with central nervous system disease. In this case viral nucleic acids were detected in the cerebrospinal fluid. EV-D68 probably does not replicate in the human intestinal tract because the virus is inactivated by low pH.

Readers might wonder why a virus that causes respiratory illness is called an enterovirus. This nomenclature is largely historical: poliovirus, which replicates in the enteric tract, was the prototype member of this genus. Other viruses, including Coxsackieviruses and echoviruses, were added to the genus based on their physical and chemical properties. However soon it became apparent that many of these viruses could also replicate in the respiratory tract. Years later the rhinoviruses, which do not replicate in the enteric tract, were added to the enterovirus genus based on nucleotide sequence comparisons. While it was decided to keep the name ‘enterovirus’ for this group of viruses, it is certainly confusing and I would argue that it should be replaced by a more descriptive name.

TWiV 274: Data dump

On episode #274 of the science show This Week in Virology, the TWiV team discusses recent cases of polio-like paralysis in California, and the virome of 14th century paleofeces.

You can find TWiV #274 at

Polio-like paralysis in California


Image credit: Jason Roberts

Recently a number of children in California have developed a poliomyelitis-like paralysis. The cause of this paralysis is not yet known, and information about the outbreak is scarce. Here is what we know so far:

  • At least 5, and perhaps as many as 20 children have suffered weakness or paralysis in one or more limbs. The median age of the patients is 12 years and the cases have been reported since 2012.
  • One group of 5 patients recently presented at the American Academy of Neurology Annual meeting developed full paralysis within 2 days, and have not recovered limb function in 6 months.
  • The cases are all located within a 100-mile radius.
  • A mild respiratory illness preceded paralysis in some of the children.
  • Enterovirus type 68 has been recovered from the stool of some of the patients.

I do not have any more information on this outbreak other than what I’ve obtained from ProMedMail. I have worked on enteroviruses, including poliovirus, for over 30 years, so I thought I might speculate on what might be transpiring.

What is a polio-like illness? Acute flaccid paralysis (AFP) is the term used to describe the sudden onset of weakness in limbs. AFP can have many etiologies, including viruses, bacteria, toxins, and systemic disease. It is used by the World Health Organization to maximize the ability to detect all cases of poliovirus. Confirmation that AFP is caused by poliovirus requires demonstration that the virus is present in the infected individual.

Is poliovirus the cause? I do not believe that poliovirus is causing the paralysis of children in California. I understand that they have all been immunized against poliovirus. In addition, should immunization have failed in any of these children, it seems unlikely that wild type polioviruses would be circulating in this area. Vaccine-derived polioviruses can cause paralysis but the US has not used this type of vaccine since 2000.

What might be causing the paralysis? AFP has both infectious and non-infectious etiologies. One possibility is that  a non-polio enterovirus is involved. Poliovirus is classified within the genus Enterovirus in the family Picornaviridae. Other enteroviruses besides poliovirus are known to cause paralytic disease, such as Coxsackieviruses, echoviruses, and many enteroviruses including types 70, 71, 89, 90, 91,96, 99, 102, and 114.

Most enterovirus infections can be associated with different clinical syndromes besides paralysis (such as respiratory disease), and therefore diagnosis is difficult. Stool is generally the most sensitive specimen for establishing an enterovirus infection. However, the virus may no longer be present at onset of symptoms. Polio is much easier to diagnose in individuals with AFP from whom virus can be identified: paralysis is the main serious symptom caused by infection. However note that 99 out of 100 poliovirus infections are asymptomatic or present with undifferentiated viral illness. The incidence of paralytic disease caused by other enteroviruses is even lower – for example 1 in 10,000 EV71 infections are paralytic. If all of the 20 California cases are caused by enteroviruses, this means that there have been many more infections without symptoms.

In one study of non-polio AFP in India, no virus could be isolated in 70% of the cases. Enterovirus 71 was the single most prevalent serotype associated with non-polio AFP. This virus currently causes large outbreaks of hand, foot, and mouth disease throughout Asia, with many fatalities and cases of acute flaccid paralysis. EV71 is known to circulate within the United States.

What about enterovirus 68? It has been reported that EV68 has been isolated from some of the paralyzed children. This isolation does not mean that the virus has caused the paralysis. Enterovirus infections of the respiratory and gastrointestinal tracts are very common and often do not result in any signs of disease. Random samplings of healthy individuals frequently demonstrate substantial rates of enterovirus infections.

Enterovirus type 68 was first isolated in California from an individual with respiratory illness. The virus is known to cause clusters of acute respiratory disease, and there is at least one report of its association with central nervous system disease. I believe it is an unlikely cause of the paralytic cases in California based solely on the past history of the virus and the fact that other enteroviruses are more likely to cause paralysis. It is not clear to me why enterovirus 68 would evolve to become substantially more neurotropic: entering the central nervous system is a dead end because the infection cannot be transmitted to a new host.

All of the above is pure speculation based on very little data. The paralysis might not even be caused by an infection. At this point a great deal of basic epidemiology needs to be done to solve the problem – if indeed it can be solved at all. Based on its population, California would be expected to have about 75 cases of acute flaccid paralysis each year of various etiologies, suggesting that the current number of cases is not unusual or unexpected.

Update: N. Gopal Raj wrote a story last year about acute flaccid paralysis in India, which has the highest rate of non-polio AFP in the world, with 60,000 cases reported in 2011.