prion conversionHere is a follow-up to last week’s article that described a case of variant Creutzfeldt-Jacob disease in a Texas resident caused by ingestion of BSE-contaminated beef 14 years ago.

A 59 year old male patient was admitted to the trauma unit in Lancaster, PA with a self-inflicted gunshot wound to the head. There was substantial bleeding and brain tissue extrusion from the bullet exit wound. While the patient was intubated, examination of his electronic health records revealed a previous diagnosis of Creutzfeldt-Jacob disease (CJD). After discussion with his family, the breathing tube was removed and the patient expired.

After discovering that the patient had CJD, TSE (transmissible spongiform encephalopathy) decontamination protocols were initiated. Equipment and surfaces that had been exposed to highly infectious brain tissues were identified. Because prions are extremely difficult to destroy, it was decided to incinerate many pieces of equipment costing tens of thousands of dollars. This decision was taken to protect workers in the trauma unit and future hospital patients from hospital-acquired CJD.

The usual sterilization conditions (121 degrees Celsius for 20 minutes under high pressure) do not destroy prion protein infectivity. Consequently the World Health Organization recommends incineration of potentially contaminated materials. While environmental transmission of prion diseases has not been reported, WHO suggests rinsing surfaces with sodium hydroxide or sodium hypochlorite for 1 hour, followed by flooding with water, to remove prions.

This case illustrates the problems associated with an unusual infectious agent, the prion, that is difficult to inactivate. It also shows the value of electronic health records. Without such readily accessible information, the discovery that the patient had CJD would have been substantially delayed, leading to further contamination.

Creutzfeldt-Jacob associated deaths have increased slowly but steadily in the US since 1979. The number of cases will likely continue to increase until early diagnosis tests become routinely available, and drugs are developed that can cure the disease.


On episode #357 of the science show This Week in Virology, Jens Kuhn joins the TWiVomics to discuss the strengths and weaknesses of viral taxonomy, including its history and evolution, how viruses are ordered, and why T. rex was classified without having a living isolate.

You can find TWiV #357 at

prion conversionSpongiform encephalopathies are neurodegenerative diseases caused by misfolding of normal cellular prion proteins. A 2014 case of variant Creutzfeldt-Jacob prion disease in the United States was probably caused by eating beef from animals with bovine spongiform encephalopathy (BSE), or mad cow disease.

Human spongiform encephalopathies are placed into three groups: infectious, familial or genetic, and sporadic, distinguished by how the disease is acquired initially. In the mid 1980s, a prion disease called bovine spongiform encephalopathy appeared in cows in the United Kingdom. It is believed to have been transmitted to cows by feeding them meat and bone meal, a high protein supplement prepared from the offal of sheep, cattle, pigs, and chicken. Some of the animals prepared for feed likely had a prion disease. Cases of variant Creutzfeld-Jakob disease, a new spongiform encephalopathy of humans, began to appear in 1994 in Great Britain. They were characterized by a lower mean age of the patients (26 years), longer duration of illness, and differences in other clinical and pathological characteristics. Variant Creutzfeldt-Jakob disease (vCJD) is caused by prions transmitted by the consumption of cattle with bovine spongiform encephalopathy.

In late 2012 a male Texas resident began showing symptoms of depression and anxiety, followed by delusions, hallucinations, and other changes in behavior. Over the next 18 months the patient’s condition deteriorated, leading to inability to ambulate or speak, and after several episodes of aspiration pneumonia and sepsis the patient died. During the illness prion disease was suspected, but tests for this condition were negative. After death, examination of brain biopsies revealed typical prion plaques, and misfolded prion proteins were found in urine, confirming the diagnosis of variant Creutzfeldt-Jacob disease.

The source of the patient’s prion disease was likely consumption of contaminated beef from cows with bovine spongiform encephalopathy. The patient probably acquired the infection in Russia, Lebanon, or Kuwait, three countries that had received BSE-contaminated beef from the UK, and and where he had previously lived. He resided in the US for 14 years before developing symptoms, an incubation period consistent with models of the vCJD epidemic.

This Texas patient is the fourth worldwide since 2012 to be diagnosed with vCJD; the others were from the UK and France. There are likely to be additional cases of vCJD in the future: surveys of archived appendix tissues in the UK show that 1 in 2,000 persons born during 1941-1985 have asymptomatic vCJD infection. These individuals could transmit the misfolded prion proteins to others via transplantation, blood transfusion, or surgical instruments (prion infectivity is not destroyed by autoclaving).

The good news is that vCJD is rare: there have been 230 reported cases of vCJD worldwide caused by consumption of BSE beef. The bad news is that vCJD will probably continue to appear in humans for many years, not only from the aftermath of the BSE epidemic. Rare cows spontaneously develop BSE, and because cattle are slaughtered before disease symptoms are evident, contaminated meat could enter the food supply.


TWiV #356: Got viruses?

27 September 2015

On episode #356 of the science show This Week in Virology, Stephanie joins the super professors to discuss the gut virome of children with serious malnutrition, caterpillar genes acquired from parasitic wasps, and the effect of adding chemokines to a simian immunodeficiency virus DNA vaccine.

You can find TWiV #356 at

parasitic waspParasitic wasps (in the order Hymenoptera) inject their eggs into lepidopteran hosts, where the eggs go through their developmental stages. Along with the eggs, the wasps also deliver viruses carrying genes encoding proteins that inhibit caterpillar immune defenses. Some of these genes are permanently transferred to the lepidopteran host where they have assumed new defensive functions against other viruses.

The viruses that parasitic wasps inject with their eggs, called Bracoviruses, are encoded in the wasp genome. About 100 million years ago a nudivirus genome integrated into the genome of a common wasp ancestor. With time the viral genes became dispersed in the wasp genome. The viruses produced by these wasps today no longer carry capsid coding genes – they are found only in the wasp genome – but only carry genes whose products can modulate lepidopteran defenses. Once in the lepidopteran host, these viruses deliver their genes but no longer form new particles.

An important question is whether wasp Bracoviruses can contribute genes to Lepidoptera – a process called horizontal gene transfer. This possibility would seem remote because the lepidopteran hosts for wasp larvae are dead ends – they die after serving as hosts for wasp development. However, it is possible that some hosts resist killing, or that wasps occasionally inject their eggs and viruses into the wrong host, one that can resist killing.

To answer this question, the genome sequence of Cotesia congregata bracovirus was compared with the genomes of a regular host as well as non-host Lepidoptera. Bracovirus DNA insertions were identified in genomes of the monarch, the silkworm, the beet armyworm and the fall armyworm, but not in the genome of the tobacco hornworm, the usual host of the wasp (C. congregata).

Not only were the Bracovirus sequences found in these varied Lepidoptera, but some appeared to be functional. Two such genes encode a protein that interferes with the replication of baculovirus, a known pathogen of Lepidoptera. This discovery was made in the process of producing the encoded proteins using baculovirus vectors! In other words, viral genes delivered by Hymenopteran wasps were appropriated by the Lepidoptera and used for their defense against a pathogen.

To put it another way, nature has carried out a gain-of-function experiment. Should we impose a moratorium?

The delivery of immunosuppressive viruses by wasps along with their eggs is by all accounts a remarkable story. The appropriation of some of these genes by the wrong hosts should not come as a surprise, yet the finding is nevertheless simply amazing. As long as we keep looking, we will find that the biological world is always full of new revelations.


On episode #355 of the science show This Week in Virology, the TWiV team considers the effect of a Leishmaniavirus on the efficacy of drug treatment, and the human fecal virome and microbiome in twins during early infancy.

You can find TWiV #355 at

Cutaneous leishmaniaThe protozoan parasite Leishmania, transmitted to humans by the bite of a sandfly, may cause disfiguring skin lesions. A virus within the parasite appears to increase the risk of treatment failure with anti-leishmania drugs.

A double-stranded RNA virus was found over 20 years ago to infect different species of Leishmania, with up to 50% of clinical isolates infected. Leishmaniavirus (LRV) causes a chronic infection with little effect on the parasite. In mouse models, infection of Leishmania with LRV is associated with increased parasite replication and disease severity. The double-stranded RNA genome of LRV appears to be sensed by the mammalian innate immune system, leading to overproduction of cytokines and a hyper-inflammatory response. Similarly, the dsRNA of Trichomonas vaginalis virus is also sensed by the innate immune system, leading to inflammatory complications.

Two independent studies have been done to assess the consequence of LRV infection in human cases of leishmaniasis. In one study, presence of LRV was determined in Leishmania braziliensis isolated from 97 patients in Peru and Bolivia. The patients were treated with pentavalent antimonials or amphotericin B, and the outcome was determined as ‘cured’ or ‘failure’. Thirty-two (33%) Leishmania isolates were found to contain LRV.   Treatment failed in 33% of the patients (18 of 54). There were fewer drug failures in the LRV negative isolates (9 of 37, 24%) than in the LRV positive isolates 9 of 17, 53%). These observations demonstrate that presence of LRV is associated with a significant increase in the risk of treatment failure.

In the second study, carried out in French Guiyana, 58% of 75 patients with Leishmania guyanensis infection had LRV in the parasite. All the patients with LRV-negative Leishmania were cured after one or two treatments with pentamidine, while 12 of 44 LRV-positive patients (27%) had persistent infections requiring treatment with other drugs. In addition, presence of LRV was associated with high levels of inflammatory cytokines within lesions.

The results of both studies show that infection of Leishmania with LRV is associated with drug treatment failure and persistent infection. Determining whether LRV is present in infected patients could therefore guide better treatment strategies. How the presence of the virus leads to such consequences is unknown. The effect might be a consequence of higher parasite numbers associated with LRV infection, which simply overcome already marginal drugs. The host inflammatory response caused by the dsRNA of LRV might also play a role. Understanding the precise mechanism might allow the development of drugs that overcome the effects of LRV. It might also be useful to develop drugs that target LRV, thereby improving the efficacy of anti-Leishmania drugs.


TWiV 354: The cat in the HAART

13 September 2015

On episode #354 of the science show This Week in Virology, the esteemed doctors of TWiV review a new giant virus recovered from the Siberian permafrost, why influenza virus gain of function experiments are valuable, and feline immunodeficiency virus.

You can find TWiV #354 at

VAPPThe Sabin infectious, attenuated poliovirus vaccines are known to cause vaccine-associated paralysis in a small number of recipients. In contrast, the Salk inactivated vaccine does not cause poliomyelitis. Why are the Sabin vaccines still used globally? The answer to this question requires a brief visit to the history of poliovirus vaccines.

The inactivated poliovirus vaccine (IPV) developed by Jonas Salk was licensed for use in 1955. This vaccine consists of the three serotypes of poliovirus whose infectivity, but not immunogenicity, is destroyed by treatment with formalin. When prepared properly, IPV does not cause poliomyelitis (early batches of IPV were not sufficiently inactivated, leading to vaccine-associated outbreaks of polio, the so-called Cutter incident). From 1955 to 1960 cases of paralytic poliomyelitis in the United States dropped from 20,000 per year to 2,500.

While Salk’s vaccine was under development, several investigators pursued the production of infectious, attenuated vaccines as an alternative. This approach was shown to be effective by Max Theiler, who in 1937 had made an attenuated vaccine against yellow fever virus by passage of the virulent virus in laboratory mice. After many passages, the virus no longer caused disease in humans, but replicated sufficiently to induce protective immunity. Albert Sabin capitalized on these observations and developed attenuated versions of the three serotypes of poliovirus by passage of virulent viruses in different animals and cells. In contrast to Theiler’s yellow fever vaccine, which was injected, Sabin’s poliovirus vaccines were designed to be taken orally – hence the name oral poliovirus vaccine (OPV). As in a natural poliovirus infection, Sabin’s vaccines would replicate in the intestinal tract and induce protective immunity there and in the bloodstream.

Sabin began testing his attenuated vaccines in humans in 1954. By 1957 there was evidence that the virus that was fed to volunteers was not the same as the virus excreted in the feces. As Sabin writes:

It was evident, however, that as in the young adult volunteers, the virus in some of the stool specimens had a greater neurovirulence than the virus originally swallowed in tests in monkeys.

What Sabin did not know was whether the change in neurovirulence of his vaccine strains constituted a threat to the vaccine recipients and their contacts, a question that could only be answered by carrying out larger clinical trials. Many felt that such studies were not warranted, especially considering the success of IPV in reducing the number of paralytic cases. Sabin notes that his friend Tom Rivers, often called the father of American virology, told him to ‘discard the large lots of OPV that I had prepared into a suitable sewer’.

Despite the opposition to further testing of OPV in the US, others had different views. An international committee of the World Health Organization recommended in 1957 that larger trials of OPV should be carried out in different countries. Sabin’s type 2 vaccine was given to 200,000 children during an outbreak of polio in Singapore in 1958, and follow-up studies revealed no safety problems. In Czechoslovakia 140,000 children were given OPV and subsequent studies revealed that the virus spread to unimminized contacts but did not cause disease.

Perhaps the most important numbers came from trials of OPV in the Soviet Union. Sabin had been born in Russia and had close contacts with Soviet virologists, including Mikhail Chumakov, director of the Poliomyelitis Research Institute in Moscow. Chumakov was not satisfied with the results of IPV trials in his country and asked Sabin to send him OPV for testing. By the end of 1959 nearly 15,000,000 people had been given OPV in different parts of the Soviet Union with no apparent side effects. Dorothy Horstmann, a well known virologist at Yale University, was sent to the Soviet Union to evaluate the outcome of the trials. Horstmann writes:

It was clear that the trials had been carefully carried out, and the results were monitored meticulously in the laboratory and in the field. By mid-1960 approximately 100 million persons in the Soviet Union, Czechoslovakia, and East Germany had received the Sabin strains. Of great importance was the demonstration that the vaccine was safe, not only for the recipients, but for the large numbers of unvaccinated susceptible who must have been exposed as contacts of vaccines.

The results obtained from these trials in the Soviet Union convinced officials in the US and other countries to carry out clinical trials of OPV. In Japan, Israel, Chile, and other countries, OPV was shown to be highly effective in terminating epidemics of poliomyelitis. In light of these findings, all three of Sabin’s OPV strains were approved for use in the US, and in 1961-62 they replaced IPV for routine immunization against poliomyelitis.

As soon as OPV was used in mass immunizations in the US, cases of vaccine-associated paralysis were described. Initially Sabin decried these findings, arguing that temporal association of paralysis with vaccine administration was not sufficient to implicate OPV. He suggested that the observed paralysis was caused by wild-type viruses, not his vaccine strains.

A breakthrough in our understanding of vaccine-associated paralysis came in the early 1980s when the recently developed DNA sequencing methods were used to determine the nucleotide sequences of the genomes of the Sabin type 3 vaccine, the neurovirulent virus from which it was derived, and a virus isolated from a child who had developed paralysis after administration of OPV. The results enumerated for the first time the mutations that distinguish the Sabin vaccine from its neurovirulent parent. More importantly, the genome sequence of the vaccine-associated isolate proved that it was derived from the Sabin vaccine and was not a wild-type poliovirus.

We now understand that every recipient of OPV excretes, within a few days, viruses that are more neurovirulent that the vaccine strains. This evolution occurs because during replication of the OPV strains in the human intestine, the viral genome undergoes mutation and recombination that eliminate the attenuating mutations that Sabin so carefully selected by passage in different hosts.

From 1961 to 1989 there were an average of 9 cases (range, 1-25 cases) of vaccine-associated paralytic poliomyelitis (VAPP) in the United States, in vaccine recipients or their contacts, or 1 VAPP case per 2.9 million doses of OPV distributed (illustrated). Given this serious side effect, the use of OPV was evaluated several times by the Institute of Medicine, the Centers for Disease Control and Prevention, and the Advisory Committee on Immunization Practices. Each time it was decided that the risks associated with the use of OPV justified the cases of VAPP. It was believed that a switch to IPV would lead to outbreaks of poliomyelitis, because: OPV was better than IPV at protecting non-immunized recipients; the need to inject IPV would lead to reduced compliance; and IPV was known to induce less protective mucosal immunity than OPV.

After the WHO began its poliovirus eradication initiative in 1988, the risk of poliovirus importation into the US slowly decreased until it became very difficult to justify routine use of OPV. In 1996 the Advisory Committee on Immunization Practices decided that the US would transition to IPV and by 2000 IPV had replaced OPV for the routine prevention of poliomyelitis. As a consequence VAPP has been eliminated from the US.

OPV continues to be used in mass immunization campaigns for the WHO poliovirus eradication program, because it is effective at eliminating wild polioviruses, and is easy to administer. A consequence is that neurovirulent vaccine-derived polioviruses (VDPV) are excreted by immunized children. These VDPVs have caused outbreaks of poliomyelitis in areas where immunization coverage has dropped. Because VDPVs constitute a threat to the eradication campaign, WHO has recommended a global transition to IPV. Once OPV use is eliminated, careful environmental surveillance must be continued to ensure that VDPVs are no longer present before immunization ceases, a goal after eradication of poliomyelitis.

As a virologist working on poliovirus neurovirulence, I have followed the vaccine story since I joined the field in 1979. I have never understood why no cases of VAPP were observed in the huge OPV trials carried out in the Soviet Union. Had VAPP been identified in these trials, OPV might not have been licensed in the US. Global use of OPV has led to near global elimination of paralytic poliomyelitis. Would the exclusive use of IPV have brought us to the same point, without the unfortunate cases of vaccine-associated paralysis? I’m not sure we will ever know the answer.

Update: As recently as 1997 DA Henderson, architect of smallpox eradication, argued that developed countries should not use IPV, because it ‘implies accepting the potential of substantial penalties while reducing but not eliminating, an already extremely small risk of vaccine-associated paralytic illness’.


ASM Live at ICAAC/ICC 2015

9 September 2015

ASM Live will be broadcast from ICAAC/ICC 2015 in San Diego, CA, where host Michael Schmidt, PhD, Professor and Vice Chairman of Microbiology and Immunology at the Medical University of South Carolina, and co-host of This Week in Microbiology, will interview researchers about their work.

Streaming will take place at the San Diego Convention Center, Room 29B, and meeting registrants are encouraged to attend. You can watch ASM Live at Content will also be archived immediately on YouTube and MicrobeWorld for future viewing.