Transgenic pigs resistant to foot-and-mouth disease

Foot-and-mouth disease virus (FMDV) infects cloven-hoofed animals such as cattle, pigs, sheep, goats, and many wild species. The disease caused by this virus is a substantial problem for farmers because infected animals cannot be sold. Transgenic pigs have now been produced which express a short interfering RNA (siRNA) and consequently have reduced susceptibility to infection with FMDV.

FMDV is classified in the picornavirus family which also contains poliovirus and rhinoviruses. The virus is highly contagious and readily spreads long distances via wind currents, and among animals by aerosols and contact with farm equipment. Infection causes a high fever and blisters in the mouth and on the feet – hence the name of the disease. When outbreaks occur, they are economically devastating. The 2001 FMDV outbreak in the United Kingdom was stopped by mass slaughter of all animals surrounding the affected areas – an estimated 6,131,440 – in less than a year.

Vaccines against the virus can be protective but they are not an optimal solution. One problem is that antigenic variation of the virus may thwart protection. In addition, countries free of FMDV generally do not vaccinate because this practice would make the animals seropositive and prevent their export (it is not possible to differentiate between antibodies produced by natural infection versus immunization). Furthermore, if there were an outbreak of foot-and-mouth disease in such countries, the rapid replication and spread of the virus would make vaccination ineffective – hence culling of animals as described above is required. Clearly other means of protecting animals against FMDV are needed.

Synthetic short interfering RNAs (siRNA) have been shown to block viral replication in cell culture and in animals. To achieve such inhibition, short synthetic RNAs complementary to viral sequences are produced in cells. Upon infection, these siRNAs combine with the cellular RNA-induced silencing complex (RISC) which then targets the viral RNA for degradation.

To determine if siRNA could be used to protect pigs from foot-and-mouth disease, a complementary viral sequence was first identified that blocks FMDV replication in cell culture by ~97%. A vector containing this siRNA sequence was then used to produce transgenic pigs. Such animals not only express the antiviral siRNA, but as the encoding vector is present in germ cells, it is passed on to progeny pigs.

Expression of the siRNA was confirmed in a variety of transgenic pig tissues, including heart, lung, spleen, liver, kidney, and muscle. In fibroblasts produced from transgenic pigs, virus replication was reduced 30 fold. When transgenic pigs were inoculated intramuscularly with FMDV, none of the animals developed signs of disease such as fever or blisters of the feet and nose. In contrast, control non-transgenic pigs developed high fever and lesions. Viral RNA levels in the blood of transgenic pigs were 100-fold lower than in control animals. At 10 days post-infection no viral RNA was detected in heart, lung, spleen, liver, kidney, and muscle, while high levels were observed in these organs from non-transgenic controls.

These results show that siRNAs can protect transgenic pigs from FMDV induced disease. An important question that must be answered is whether transgenic pigs still contain enough virus to transmit infection to other animals. In addition, siRNAs are short – 21 nucleotides – and a mutation in the viral genome can block their inhibitory activity. Therefore it would be important to determine if mutations arise in the FMDV genome that lead to resistance to siRNAs.

Even if transgenic siRNA pigs do not transmit infection, and viral resistance does not arise, I am not sure that consumers are ready to accept such genetically modified animals.

Comments on this entry are closed.

  • Gertrud Rey

    Bingo on the last sentence. Sigh.